Segregation during flow of granular materials is important from an industrial point of view. Considerable work has been done on granular segregation in heap flows by continuous pouring. We studied the flow and segregation of granular mixtures during heap formation in a quasi two-dimensional rectangular bin by intermittent pouring. The heap formed by repeatedly pouring a fixed mass of the mixture. Each feeding results in the formation of a layer of the mixture on the surface of the heap. The system is a simplified model for the feeding of raw materials to a blast furnace, which is widely used for the manufacture of iron and steel. Experiments were carried out to study the dynamics of granular materials during heap formation. The number density, area fraction and average velocity of small and big particles are plotted across the flowing depth with time. Results shows that larger particles are always on top flowing over small particles. During flow small particles easily percolate through the gaps between the large particles. A thin layer of small particles is also observed at the free surface. Here the system never reached a steady state as we are pouring the mixture intermittently and system is closed. The velocity increases initially and then decreases towards the end. The number density (i.e. area fraction) profile changes for small and big particles during flow. Image analysis is done to detect the position of each particle on the side wall. Each experiment is repeated six times to get average data.
Segregation during flow of granular materials is important from an industrial point of view. Granular materials segregate during flow due to their physical properties (such as size, shape, and density). A considerable work has been done on granular segregation in the past (two decades). This chapter is divided into three parts. In the first part, a review of work done on heap formation is presented. Experimental work during heap formation by intermittent feeding is reported in the second part. The system used is a simplified model for the feeding of raw materials to a blast furnace, which is widely used for the manufacture of iron and steel. Experiments carried out using 2-D system and steel balls of size 1 and 2 mm are used as model granular materials. Image analysis is done to detect the position of each particle using an in-house computer code. Accuracy and efficiency of image analysis techniques were found to be good enough as we have used 1 and 2 mm spherical steel balls for all the cases studied. The chapter ends with concluding remarks.
The present study is on segregation of granular mixtures during heap formation in a quasi two-dimensional rectangular bin where binary mixture of a specified composition is poured intermittently into the auxiliary hopper and then allowed to pass through the gap (k = 10 mm) between the divider and the plate and finally settle on to the heap. The profiles of number fraction of big particles are plotted along the flow directions to study the segregation phenomena for surface profile. It shows that larger particles travel more distance and smaller particles settle near the pouring point for all cases studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.