Relying upon the basic tenets of scientific modeling, an ansatz for the evaluation of proton affinity of molecules are evolved in terms of a four component model. The components of the model chosen are global descriptors like ionization energies, global softness, electronegativity and electrophilicity index. These akin quantum mechanical descriptors of atoms and molecules are linked with the charge rearrangement and polarization that occur during the physico-chemical process of protonation of molecules. The suggested ansatz is invoked to compute the protonation energy of as many as 43 compounds of diverse physico-chemical nature viz, hydrocarbons, alcohols, carbonyls, carboxylic acids, esters, aliphatic amines and aromatic amines. A detailed comparative study of theoretically evaluated protonation energies of the above mentioned molecules vis-à-vis their corresponding experimental counterparts reveals that there is a close agreement between the theory and experiment. Thus the results strongly suggest that the proposed modeling and the ansatz for computing PA, the proton affinity, of molecules for studying the physico-chemical process of protonation may be valid proposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.