Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein–glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.
Emergence of multidrug-resistant and extreme-drug-resistant strains of Mycobacterium tuberculosis (MTb) can cause serious socioeconomic burdens. Arabinogalactan present on the cellular envelope of MTb is unique and is required for its survival; access to arabinogalactan is essential for understanding the biosynthetic machinery that assembles it. Isolation from Nature is a herculean task and, as a result, chemical synthesis is the most sought after technique. Here we report a convergent synthesis of branched heneicosafuranosyl arabinogalactan (HAG) of MTb. Key furanosylations are performed using [Au]/[Ag] catalysts. The synthesis of HAG is achieved by the repetitive use of three reactions namely 1,2-trans furanoside synthesis by propargyl 1,2-orthoester donors, unmasking of silyl ether, and conversion of n-pentenyl furanosides into 1,2-orthoesters. Synthesis of HAG is achieved in 47 steps (with an overall yield of 0.09%) of which 21 are installation of furanosidic linkages in a stereoselective manner.
The synthesis of N‐glycosides from stable glycosyl donors in a catalytic fashion is still challenging, though they exist ubiquitously in DNA, RNA, glycoproteins, and other biological molecules. Herein, silver‐assisted gold‐catalyzed activation of alkynyl glycosyl carbonate donors is shown to be a versatile approach for the synthesis of purine and pyrimidine nucleosides, asparagine glycosides and quinolin‐2‐one N‐glycosides. Thus synthesized nucleosides were subjected to the oxidation–reduction sequence for the conversion of Ribf‐ into Araf‐ nucleosides, giving access to nucleosides that are otherwise difficult to synthesize. Furthermore, the protocol is demonstrated to be suitable for the synthesis of 2’‐modified nucleosides in a facile manner. Direct attachment of an asparagine‐containing dipeptide to the glucopyranose and subsequent extrapolation to afford the dipeptide disaccharide unit of chloroviruses is yet another facet of this endeavor.
Oligosaccharides are involved in a myriad of biological phenomena. Many glycobiological experiments can be undertaken if homogenous and well-defined oligosaccharides are accessible. Mycobacterial cell walls contain arabinogalactan as one of the major constituents that is challenging for chemical synthesis. Therefore, the major aim of this investigation is to synthesise a major oligosaccharide portion of the arabinogalactan. The pentacosafuranoside (25mer) synthesis involved installation of several arabinofuranosidic linkages through neighbouring group participation for 1,2-trans linkages and oxidation-reduction strategy for the 1,2-cis Araf. A strategically placed n-pentenyl moiety at the reducing end enables ligation of biomolecular probes through celebrated cross metathesis or thiol-ene click reactions. Several linear and branched oligosaccharides were synthesised ranging from trisaccharide to pentadecasaccharide during this endeavour. Synthesis of pentacosasaccharide was accomplished in 77 steps with 0.0012 % overall yield. These oligosaccharides are envisioned to be excellent probes for understanding disease biology thereby facilitating discovery of novel antitubercular agents, vaccines and/or diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.