Proteins and peptides fold into dynamic structures that access a broad functional landscape; however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA engineering is now routinely used to build a wide variety of 2D and 3D nanostructures from hybridization based rules, and their functional diversity can be significantly expanded through site specific incorporation of the appropriate guest molecules. Here we demonstrate a new approach to rationally design 3D nucleic acid-amino acid complexes using peptide nucleic acid (PNA) to assemble peptides inside a 3D DNA nanocage. The PNA-peptides were found to bind to the preassembled DNA nanocage in 5-10 min at room temperature, and assembly could be performed in a stepwise fashion. Biophysical characterization of the DNA-PNA-peptide complex was performed using gel electrophoresis as well as steady state and time-resolved fluorescence spectroscopy. Based on these results we have developed a model for the arrangement of the PNA-peptides inside the DNA nanocage. This work demonstrates a flexible new approach to leverage rationally designed nucleic acid (DNA-PNA) nanoscaffolds to guide polypeptide engineering.
We have demonstrated the synergistic effect in nucleophilic fluorination when we combined two solvents--ionic liquid (IL) and tert-alcohol--into one molecule. Consequently, these functionalized ILs not only increase the nucleophilic reactivities of the fluoride anion but also remarkably reduce the olefin byproduct. Although the mechanism of this synergistic effect remains to be elucidated, we have illustrated the possibility of solvent engineering for a specific reaction.
We examined the antibacterial activities of nanosheets of the graphene analogue tungsten disulphide (WS2) and a composite of reduced graphene oxide-tungsten disulphide (rGO-WS2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.