Background In the treatment of tuberculosis, ethambutol is used in case there is isoniazid resistance. We examined for the emergence of drug resistance to ethambutol monotherapy in pharmacokinetic-pharmacodynamic studies in the hollow fiber system. Methods Dose–effect studies and dose-scheduling studies were carried out with ethambutol and log-phase growth Mycobacterium tuberculosis to identify exposures and schedules linked to optimal kill and resistance suppression. In one study, after 7 days of ethambutol 300 mg/day isoniazid was administered to each system to determine its early bactericidal activity (EBA). Results Efflux-pump blockage reduced the mutation frequency to ethambutol 64-fold. In dose-effect studies, ethambutol had a maximal EBA of 0.22 log10 CFU/ml/day, as encountered in patients. By day 7, resistance had arisen to both ethambutol and isoniazid. Prior exposure to ethambutol abolished isoniazid EBA. Daily therapy, as opposed to more intermittent therapy, was associated with the least proportion of efflux-pump driven resistance, consistent with time driven effect. Microbial kill was best explained by the ratio of area under the concentration-time curve to minimal inhibitory effect (r2=0.90). Conclusion Induction of an efflux-pump that reduces effect to multiple drugs provides an alternative pathway to sequential acquisition of mutations in the development of multiple drug resistance.
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nuclear antigens such as chromatin, DNA, and RNA. This focused autoreactivity is thought to arise from the ability of DNA or RNA specific B cells to receive dual signals from the BCR and TLR9 or TLR7, respectively. The Tec kinase Btk is necessary for the production of anti-DNA antibodies in several murine models of SLE. To assess the role of Btk in the fate of DNA reactive B cells, we generated Btk−/− mice carrying the 56R anti-DNA Ig transgene on the C57BL/6 background. dsDNA specific B cells were present in 56R.Btk−/− mice, although they were not preferentially localized to the marginal zone. These cells were able to proliferate in response to large CpG DNA containing fragments that require BCR-induced internalization to access TLR9. However, anti-DNA antibodies were not observed in the serum of 56R.Btk−/− mice. A transgene expressing a low level of Btk in B cells (Btk lo ) restored anti-DNA IgM in these mice. This correlated with partial rescue of proliferative response to BCR engagement and TLR9-induced IL-10 secretion in Btk lo B cells. anti-DNA IgG was not observed in 56R.Btk lo mice, however. This was likely due, at least in part, to a role for Btk in controlling the expression of T-bet and AID in cells stimulated with CpG DNA. Thus, Btk is required for the initial loss of tolerance to DNA and the subsequent production of pathogenic autoantibodies once tolerance is breached.
cPhenothiazines are being repurposed for treatment of tuberculosis. We examined time-kill curves of thioridazine and first-line drugs against log-growth-phase and semidormant bacilli under acidic conditions and nonreplicating persistent Mycobacterium tuberculosis. While both the potency and the efficacy of first-line drugs declined dramatically as M. tuberculosis replication rates decreased, those of thioridazine improved. The mutation prevalence to 3 times the thioridazine MIC was <1 ؋ 10 ؊11 , better than for >2 first-line drugs combined. Hollow fiber system studies revealed that the relationship between sterilizing effect and pharmacodynamic indices (PDI) was characterized by an r 2 of 0.88 for peak/MIC, an r 2 of 0.47 for the area under the concentration-time curve (AUC) to MIC, and an r 2 of 0.14 for the cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (%T MIC ) at the end of the first week. However, the PDI linked to effect "wobbled" as the duration of therapy increased, so that by the fourth week the r 2 was 0.88 for AUC/MIC, 0.78 for %T MIC , and 0.72 for peak/MIC. This "wobble" has implications on general pharmacokinetic/pharmacodynamic theory, whereby efficacy is linked to only one of the three PDIs in deterministic models. The potency changed 8.9-fold from the first to the fourth weeks. The non-protein-bound AUC/MIC associated with maximal kill at the end of therapy was 50.53 (protein binding ؍ 99.5%). This thioridazine exposure was calculated to extinguish all three M. tuberculosis metabolic populations in human lungs in only 42.9 days of monotherapy. However, this concentration exceeds the 2-to 8-mg/liter thioridazine concentration in serum known to be lethal to humans. Therefore, the way forward for phenothiazine monotherapy that also reduces therapy duration is via synthesis of less toxic congeners.
Mycobacterium avium-intracellulare complex (MAC) causes an intractable intracellular infection that presents as chronic pulmonary disease. Currently, therapy consists of ethambutol and macrolides and takes several years to complete. The neuroleptic phenothiazine thioridazine kills mycobacteria by inhibiting the electron transport chain. In several experiments with bacterial populations of up to 1012 CFU/ml, we failed to isolate any bacteria resistant to 3 times the MIC of thioridazine, suggesting the absence of resistant mutants at bacterial burdens severalfold higher than those encountered in patients. In the hollow-fiber model of intracellular MAC (HFS-MAC), thioridazine achieved an extracellular half-life of 16.8 h and an intracellular half-life of 19.7 h. Thioridazine concentrations were >28,000-fold higher inside infected macrophages than in the HFS-MAC central compartment (equivalent to plasma). Thioridazine maximal kill was 5.20 ± 0.75 log10 CFU/ml on day 7 (r2 = 0.96) and 7.19 ± 0.31 log10 CFU/ml on day 14 (r2 = 0.99), the highest seen with any drug in the system. Dose fractionation studies revealed that thioridazine efficacy and acquired drug resistance were driven by the peak concentation-to-MIC ratio, with a 50% effective concentration (EC50) of 2.78 ± 0.44 for microbial killing. Acquired drug resistance was encountered by day 21 with suboptimal doses, demonstrating that fluctuating drug concentrations drive evolution faster than static concentrations in mutation frequency studies. However, the thioridazine EC50 changed 16.14-fold when the concentration of fetal bovine serum was changed from 0% to 50%, suggesting that intracellular potency could be heavily curtailed by protein binding. Efficacy in patients will depend on the balance between trapping of the drug in the pulmonary system and the massive intracellular concentrations versus very high protein binding of thioridazine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.