Abstract. Complex numbers are a fundamental aspect of the mathematical formalism of quantum physics. Quantum-like models developed outside physics often overlooked the role of complex numbers. Specifically, previous models in Information Retrieval (IR) have ignored complex numbers. In this paper, we argue that in order to advance the use of quantum models of IR, one has to lift the constraint of real-valued representations of the information space, and package more information within the representation by means of complex numbers. As a first attempt, we propose a complex-valued representation for IR, which explicitly uses complex valued Hilbert spaces, and thus where terms, documents and queries are represented as complex-valued vectors. The proposal consists of integrating distributional semantics evidence within the real component of a term vector; whereas, ontological information is encoded in the imaginary component. Our proposal has the merit of lifting the role of complex numbers from a computational byproduct of the model to the very mathematical texture that unifies different levels of semantic information. An empirical instantiation of our proposal is tested in the TREC Medical Record task of retrieving cohorts for clinical studies.
Information foraging connects optimal foraging theory in ecology with how humans search for information. The theory suggests that, following an information scent, the information seeker must optimize the tradeoff between exploration by repeated steps in the search space vs. exploitation, using the resources encountered. We conjecture that this tradeoff characterizes how a user deals with uncertainty and its two aspects, risk and ambiguity in economic theory. Risk is related to the perceived quality of the actually visited patch of information, and can be reduced by exploiting and understanding the patch to a better extent. Ambiguity, on the other hand, is the opportunity cost of having higher quality patches elsewhere in the search space. The aforementioned tradeoff depends on many attributes, including traits of the user: at the two extreme ends of the spectrum, analytic and wholistic searchers employ entirely different strategies. The former type focuses on exploitation first, interspersed with bouts of exploration, whereas the latter type prefers to explore the search space first and consume later. Our findings from an eye-tracking study of experts' interactions with novel search interfaces in the biomedical domain suggest that user traits of cognitive styles and perceived search task difficulty are significantly correlated with eye gaze and search behavior. We also demonstrate that perceived risk shifts the balance between exploration and exploitation in either type of users, tilting it against vs. in favor of ambiguity minimization. Since the pattern of behavior in information foraging is quintessentially sequential, risk and ambiguity minimization cannot happen simultaneously, leading to a fundamental limit on how good such a tradeoff can be. This in turn connects information seeking with the emergent field of quantum decision theory.
Abstract. Spectral theory in mathematics is key to the success of as diverse application domains as quantum mechanics and latent semantic indexing, both relying on eigenvalue decomposition for the localization of their respective entities in observation space. This points at some implicit "energy" inherent in semantics and in need of quantification. We show how the structure of atomic emission spectra, and meaning in concept space, go back to the same compositional principle, plus propose a tentative solution for the computation of term, document and collection "energy" content.
Education and training of morphology for medical students, and professionals specializing in pediatric cardiology and surgery has traditionally been based on hands-on encounter with congenitally malformed cardiac specimens. Large international archives are no longer widely available due to stricter data protection rules, a reduced number of autopsies, attrition rate of existing specimens, and most importantly due to a higher survival rate of patients. Our Cardiac Archive houses about 400 cardiac specimens with congenital heart disease. The collection spans almost 60 years and thus goes back to pre-surgical era.Unfortunately, attrition rate due to desiccation has led to an increased natural decay in recent years. The present multi-institutional project focuses on saving the collection by digitization. Specimens are scanned by high-resolution micro-CT/MRI. Virtual 3D-models are segmented and a comprehensive database is built.We now report an initial feasibility study with six test specimens that provided promising results, however, adequate presentation of the intracardiac anatomy, including septa and cardiac valves requires further refinements. Computer assisted design methods are necessary to overcome consequences of pathological examination, shrinkage and/or distortion of the specimens. For a next step, we anticipate an expandable webbased virtual museum with interactive reference and training tools. Web access for professional third parties will be provided by registration/subscription. In a future phase, segmental wall motion data could be added to virtual models. 3D-printed models may replace actual specimens and serve as hands-on surgical training to elucidate complex morphologies, promote surgical emulation, and extract more accurate procedural knowledge based on such a collection.
Abstract. With insight from linguistics that degrees of text cohesion are similar to forces in physics, and the frequent use of the energy concept in text categorization by machine learning, we consider the applicability of particle-wave duality to semantic content inherent in index terms. Wave-like interpretations go back to the regional nature of such content, utilizing functions for its representation, whereas content as a particle can be conveniently modelled by position vectors. Interestingly, wave packets behave like particles, lending credibility to the duality hypothesis. We show in a classical mechanics framework how metaphorical term mass can be computed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.