Generally, optimum welding variables and conditions of manufacturing are currently mainly determined by experiments for standardized production. Virtual manufacturing and virtual testing of weldments using finite element method provide a sustainable solution for advanced applications. The aim of the current research work is to develop a weld process model, using a threedimensional heat transfer model, to ensure general applicability for typical joints of stator segments of wind turbines as a final application. A systematic experimental research program, containing temperature measurements during welding, macrographs, and deformation measurements, is carried out on small-scale test specimens using different welding variables. In addition, a numerical study using uncoupled transient thermomechanical analysis is performed. The weld process model uses Goldak's double ellipsoidal heat source model for a metal active gas welding power source. It describes the correspondence between heat source parameters and net heat input for two types of electrodes. The model is validated via cross-sectional areas of fusion zones and deformations based on experiments. The relationship between current and voltage is determined based on large number of experimental data; thus, selecting a wire type, travel speed, and voltage directly defines the heat source parameters of the weld process model.
Induction machines are popular in every segments of industry due to their simple construction and robust operation. Asynchronous machines have been being built in electric vehicles, too. The paper presents the two dimensional analysis of a voltage-fed induction machine by different kind of finite element software. The results have been compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.