BackgroundEstrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα) and β (ERβ). These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats.MethodsTo identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2), ERα agonist 16α-lactone-estradiol (16α-LE2) and ERβ agonist diarylpropionitrile (DPN), or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively.ResultsMicroarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b.ConclusionsThese findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress regulatory functions of glial cells in the E2-deprived female brain and in various neuroinflammatory diseases.
The first use of neuromuscular blocking agents (muscle relaxants) in clinical practice (1942) revolutionised the practice of anaesthesia and started the modern era of surgery. Since 1942 introduction of tubocurarine (18) neuromuscular blocking agents have been used routinely to provide skeletal muscle relaxation during surgical procedures allowing access to body cavities without hindrance from voluntary or reflex muscle movement. After the introduction of tubocurarine and the depolarizing suxamethonium chloride (4) (1949) several nondepolarizing steroidal and nonsteroidal neuromuscular blocking agents with different onset time and duration of effect were introduced e.g. gallamine triethiodide (1) (1949), methocurine (2) (1949), alcuronium chloride (3) (1963), pancuronium bromide (9) (1968), vecuronium bromide (11) (1982), pipecuronium bromide (10) (1982), atracurium besylate (5) (1982), doxacurium chloride (6) (1991), mivacurium chloride (8) (1992), rocuronium bromide (12) (1994) cisatracurium besylate (7) (1996), and rapacuronium bromide (13) (2000). SZ 1677 (14) a steroid type nondepolarizing neuromuscular blocking agent under development (preclinical phase). This review article deals with a comprehensive survey of the progress in chemical, pharmacological and, in some respects, of clinical studies of neuromuscular blocking agents used in the clinical practice and under development, including the synthesis, structure elucidation, pharmacological actions, structure activity relationships studies of steroidal and nonsteroidal derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.