Pyruvate formate-lyase (PFL) catalyzes the reversible conversion of CoA and pyruvate into acetyl-CoA and formate. Active enzyme contains a glycyl radical whose alpha-hydrogen undergoes rapid exchange with solvent (t1/2 approximately 5 min at 0 degree C). We have investigated this exchange using site-directed mutagenesis and mechanism-based inactivation. Mutation of the active-site cysteine 419 into a serine, which renders the enzyme catalytically inactive, abolishes alpha-hydrogen exchange in the radical. This suggests that the exchange process is not an intrinsic property of the glycyl radical but is a consequence of its interaction with cysteine 419. This residue is also demonstrated to be involved in the transfer of the radical to acetylphosphinate, a mechanism-based inactivator of the enzyme. In contrast, mutation of the other essential cysteine 418 to a serine has no effect on the hydrogen exchange or the transfer of the radical to acetylphosphinate. A mechanism for the hydrogen exchange catalyzed by cysteine 419 consistent with a redox role for this residue in the normal catalytic reaction is proposed.
Pyruvate formate-lyase is a radical-containing enzyme that catalyzes the nonoxidative cleavage of pyruvate via a postulated homolytic mechanism. The formation of this enzymic radical in vitro requires an activating system composed of PFL-activating enzyme, S-adenosylmethionine, ferrous ion, a reduced flavin, DTT, and pyruvate as an allosteric effector. The need for large quantities of PFL-activating enzyme for biochemical and biophysical studies on the mechanism of protein radical formation has prompted us to clone the act gene and overexpress the gene product in Escherichia coli. Using PCR technology, the act gene was isolated and subcloned into various expression vectors. The overexpression of the protein was as high as 30-50% of the total cellular protein. However, the majority of the protein resided in the form of insoluble inclusion bodies. A procedure was developed to denature and isolate the inclusion bodies followed by refolding under anaerobic conditions. This purification method affords 5 mg of purified protein from 1 g of cells. Biochemical characterization demonstrated that the enzyme can bind one Fe(II) per protein monomer, and the protein did not exhibit any visible chromophore as previously observed. Co(II) and Cu(II) can be reconstituted into the protein with similar stoichiometries. Kinetic studies showed that the rate of radical formation was independent of ionic strength and the Km's for SAM and inactive PFL were determined to be 2.8 and 1.2 microM, respectively. Fluorescent binding data revealed that the Kd for SAM binding to the activating enzyme alone was comparable to the Km for SAM in the PFL activation indicating that the binding site for SAM resides on AE.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.