The trust-region subproblem arises frequently in linear algebra and optimization applications. Recently, matrix-free methods have been introduced to solve largescale trust-region subproblems. These methods only require a matrix-vector product and do not rely on matrix factorizations [4, 7]. These approaches recast the trustregion subproblem in terms of a parameterized eigenvalue problem and then adjust the parameter to find the optimal solution from the eigenvector corresponding to the smallest eigenvalue of the parameterized eigenvalue problem. This paper presents a new matrix-free algorithm for the large-scale trust-region subproblem. The new algorithm improves upon the previous algorithms by introducing a unified iteration that naturally includes the so called hard case. The new iteration is shown to be superlinearly convergent in all cases. Computational results are presented to illustrate convergence properties and robustness of the method.
a b s t r a c tThis paper presents a geometrical approach to the Fisher distance, which is a measure of dissimilarity between two probability distribution functions. The Fisher distance, as well as other divergence measures, is also used in many applications to establish a proper data average. The main purpose is to widen the range of possible interpretations and relations of the Fisher distance and its associated geometry for the prospective applications. It focuses on statistical models of the normal probability distribution functions and takes advantage of the connection with the classical hyperbolic geometry to derive closed forms for the Fisher distance in several cases. Connections with the well-known Kullback-Leibler divergence measure are also devised.
This paper is devoted to the eigenvalue complementarity problem (EiCP) with symmetric real matrices. This problem is equivalent to finding a stationary point of a differentiable optimization program involving the Rayleigh quotient on a simplex (Queiroz et al., Math. Comput. 73, 1849-1863). We discuss a logarithmic function and a quadratic programming formulation to find a complementarity eigenvalue by computing a stationary point of an appropriate merit function on a special convex set. A variant of the spectral projected gradient algorithm with a specially designed line search is introduced to solve the EiCP. Computational experience shows that the application of this algorithm to the logarithmic function formulation is a quite efficient way to find a solution to the symmetric EiCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.