The aim of this study was to determine whether phenotypes associated with type 2 diabetes are altered in dyslipidemic obese mice. C57BL/6 wild-type, low-density lipoprotein (LDL) receptor-deficient (LDLR-/-), and apolipoprotein E-deficient (apoE-/-) mice were fed a high-fat, high-carbohydrate diet (diabetogenic diet), and the development of obesity, diabetes, and hypertriglyceridemia was examined. Wild-type mice became obese and developed hyperglycemia, but not hypertriglyceridemia, in response to this diet. LDLR-/- mice fed the diabetogenic diet became more obese than wild-type mice and developed severe hypertriglyceridemia and hyperleptinemia. Surprisingly, glucose levels were only modestly higher and insulin levels and insulin-to-glucose ratios were not strikingly different from those of wild-type mice. In contrast, diabetogenic diet-fed apoE-/- mice were resistant to changes in glucose and lipid homeostasis despite becoming obese. These data suggest that modifications in lipoprotein profiles associated with loss of the LDL receptor or apoE function have profound and unique consequences on susceptibility to diet-induced obesity and type 2 diabetic phenotypes.
Although the precise mechanisms contributing to insulin resistance and type 2 diabetes are unknown, it is believed that defects in downstream components of the insulin signaling pathway may be involved. In this work, we hypothesize that a serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), may be pertinent in this regard. To test this hypothesis, we examined GSK-3 activity in two inbred mouse strains known to be susceptible (C57BL/6J) or resistant (A/J) to diet-induced obesity and diabetes. Examination of GSK-3 in fat, liver, and muscle tissues of C57BL/6J mice revealed that GSK-3 activity increased twofold in the epididymal fat tissue and remained unchanged in muscle and liver of mice fed a high-fat diet, compared with their low-fat diet-fed counterparts. In contrast, GSK-3 activity did not change in the epididymal fat tissue of A/J mice, regardless of the type of diet they were fed. In addition, both basal and diet-induced GSK-3 activity was higher (2.3- and 3.2-fold, respectively) in the adipose tissue of C57BL/6J mice compared with that in A/J mice. Taken together, our studies suggest an unsuspected link between increased GSK-3 activity and development of insulin resistance and type 2 diabetes in fat tissue of C57BL/6J mice, and implicate GSK-3 as a potential factor contributing to susceptibility of C57BL/6J mice to diet-induced diabetes.
TNF-␣ may play a role in mediating insulin resistance associated with obesity. This concept is based on studies of obese rodents and humans, and cell culture models. TNF elicits cellular responses via two receptors called p55 and p75. Our purpose was to test the involvement of TNF in glucose homeostasis using mice lacking one or both TNF receptors. C57BL/6 mice lacking p55 (p55 Ϫ / Ϫ ), p75, (p75 Ϫ / Ϫ ), or both receptors (p55 Ϫ / Ϫ p75 Ϫ / Ϫ ) were fed a high-fat diet to induce obesity. Marked fasting hyperinsulinemia was seen for p55 Ϫ / Ϫ p75 Ϫ / Ϫ males between 12 and 16 wk of feeding the high-fat diet. Insulin levels were four times greater than wild-type mice. In contrast, p55Ϫ / Ϫ and p75 Ϫ / Ϫ mice exhibited insulin levels that were similar or reduced, respectively, as compared with wild-type mice. In addition, high-fat dietfed p75 Ϫ / Ϫ mice had the lowest body weights and leptin levels, and improved insulin sensitivity. Obese ( db/db ) mice, which are not responsive to leptin, were used to study the role of p55 in severe obesity. Male p55 Ϫ / Ϫ db/db mice exhibited threefold higher insulin levels and twofold lower glucose levels at 20 wk of age than control db/db expressing p55. All db/db mice remained severely insulin resistant based on fasting plasma glucose and insulin levels, and glucose and insulin tolerance tests. Our data do not support the concept that TNF, acting via its receptors, is a major contributor to obesity-associated insulin resistance. In fact, data suggest that the two TNF receptors work in concert to protect against diabetes. ( J. Clin. Invest . 1998. 102:402-411.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.