Size fitting is a significant problem for online garment shops. The return rates due to size misfit are very high. We propose an ensemble (with an original and novel definition of the weights) of ordered logistic regression and random forest (RF) for solving the size matching problem, where ordinal data should be classified. These two classifiers are good candidates for combined use due to their complementary characteristics. A multivariate response (an ordered factor and a numeric value assessing the fit) was considered with a conditional random forest. A fit assessment study was carried out with 113 children. They were measured using a 3D body scanner to obtain their anthropometric measurements. Children tested different garments of different sizes, and their fit was assessed by an expert. Promising results have been achieved with our methodology. Two new measures have been introduced based on RF with multivariate responses to gain a better understanding of the data. One of them is an intervention in prediction measure defined locally and globally. It is shown that it is a good alternative to variable importance measures and it can be used for new observations and with multivariate responses. The other proposed tool informs us about the typicality of a case and allows us to determine archetypical observations in each class.Keywords: Multivariate conditional random forest; Proportional odds logistic regression; Supervised learning; Ordinal classification; Childrenswear garment fitting; Variable importance ACKNOWLEDGEMENTS This work has been partially supported by Grants DPI2013-47279-C2-1-R and DPI2013-47279-C2-2-R.An ensemble of ordered logistic regression and random forest for child garment size matchingSize fitting is a significant problem for online garment shops. The return rates due to size misfit are very high. We propose an ensemble (with an original and novel definition of the weights) of ordered logistic regression and random forest (RF) for solving the size matching problem, where ordinal data should be classified. These two classifiers are good candidates for combined use due to their complementary characteristics. A multivariate response (an ordered factor and a numeric value assessing the fit) was considered with a conditional random forest. A fit assessment study was carried out with 113 children. They were measured using a 3D body scanner to obtain their anthropometric measurements. Children tested different garments of different sizes, and their fit was assessed by an expert. Promising results have been achieved with our methodology. Two new measures have been introduced based on RF with multivariate responses to gain a better understanding of the data. One of them is an intervention in prediction measure defined locally and globally. It is shown that it is a good alternative to variable importance measures and it can be used for new observations and with multivariate responses. The other proposed tool informs us about the typicality of a case and allows us to determine archetypical obs...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.