The Bonga complex is composed of a central carbonatite plug (with a ferrocarbonatite core) surrounded by carbonatite cone sheets and igneous breccias of carbonatitic, fenitic, phoscoritic and lamprophyric xenoliths set in a carbonatitic, lamprophyric or mingled mesostase. To reconstruct the dynamics of the complex, the pyrochlore composition and distribution have been used as a proxy of magmatic-hydrothermal evolution of the complex. An early Na-, F-rich pyrochlore is disseminated throughout the carbonatite plug and in some concentric dykes. Crystal accumulation led to enrichment of pyrochlore crystals in the plug margins, phoscoritic units producing high-grade concentric dykes. Degassing of the carbonatite magma and fenitization reduced F and Na activity, leading to the crystallization of magmatic Na-, F- poor pyrochlore but progressively enriched in LILE and HFSE. Mingling of lamprophyric and carbonatite magmas produced explosive processes and the formation of carbonatite breccia. Pyrochlore is the main Nb carrier in mingled carbonatites and phoscorites, whereas Nb is concentrated in perovskite within mingled lamprophyres. During subsolidus processes, hydrothermal fluids produced dolomitization, ankeritization and silicification. At least three pyrochlore generations are associated with late processes, progressively enriched in HFSE, LILE and REE. In the lamprophyric units, perovskite is replaced by secondary Nb-rich perovskite and Nb-rich rutile. REE-bearing carbonates and phosphates formed only in subsolidus stages, along with late quartz; they may have been deposited due to the release of the REE from magmatic carbonates during the hydrothermal processes.
The Angolan alkaline–carbonatite complex of Monte Verde has a semi-circular shape and is comprised of a central intrusion of foidolite rocks surrounded by concentrically arranged minor bodies of other alkaline rocks and carbonatite magmatic breccias. This rock association is hosted by fenitized Eburnean granites. Concentric swarms of alkaline dykes of late formation, mostly of nepheline trachyte composition, crosscut the previous units. Most high-field strength elements (HFSE) and rare earth elements (REE) are concentrated in pyrochlore crystals in the carbonatite and alkaline breccias. Magmatic fluornatropyrochlore is replaced and overgrown by five secondary generations of pyrochlore formed during subsolidus stages and have higher Th, REE, Si, U, Sr, Ba, Zr, and Ti contents. The second, third, and fourth pyrochlore generations are associated with late fluids also producing quartz and REE rich minerals; whereas fifth and sixth pyrochlore generations are linked to the fenitization process. On the other hand, minerals of the rinkite, rosenbuschite, wöhlerite, eudialyte groups, as well as loparite-(Ce), occur in accessory amounts in nepheline trachyte, recording low to moderate agpaicity. In addition, minor REE-bearing carbonates, silicates, and phosphates crystallize as late minor secondary minerals into carbonatite breccia and alkaline dykes. In conclusion, the scarcity of HFSE and REE minerals at the Monte Verde carbonatite-alkaline-agpaitic complex suggests low metallogenetic interest and economic potential for the outcrops analysed in this study. However, the potential for buried resources should not be neglected.
The Eureka deposit in Castell-estaó in the Catalan Pyrenees is a Cu–U–V deposit, hosted by Triassic red-bed sandstones, and classified here as a low-temperature, sandstone-hosted stratabound metamorphite U deposit. The main mineralisation is stratabound, related to coal-bearing units and produced during the Alpine deformation by migration of hydrothermal fluids. In this stage, the original sedimentary and diagenetic components (quartz and calcite, micas, hematite and locally apatite) were replaced by a complex sequence of roscoelite, fine-grained REE phosphates, sulphides and Ni–Co arsenides and sulpharsenides, Ag–Pb selenides, bismuth phases, sulphosalts and uraninite. The black shales of the Silurian sediments underlying the deposit and the nearby Carboniferous volcanoclastic rocks are interpreted as the source of the redox-sensitive elements concentrated in Eureka. The sulphur source is related to leaching of the evaporitic Keuper facies. The REE transport would be facilitated by SO4-rich solutions. The reduction of these solutions by interaction with organic matter resulted in the widespread precipitation of REE and redox-sensitive elements, including many critical metals (V, Bi, Sb, Co), whereas barite precipitated in the oxidized domains. The occurrence of similar enrichments in critical elements can be expected in other similar large uranium deposits, which could be a source of these elements as by-products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.