Original Citation:A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes Published version:DOI:10.1111/gcb.13714 Terms of use:Open Access (Article begins on next page) Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global meta-dataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes. Availability: This is the author's manuscript
Climate and land-use change are recognised as the two main drivers of the ongoing reorganisation of Earth's biodiversity, but understanding precisely their role in shaping species' distributions and communities remains challenging. In mountainous regions, we typically observe an uphill shift of species' altitudinal ranges caused by increasing temperatures, but it is difficult to predict how this process interacts with land-use change. Here, we replicated an inventory of bumblebees that took place in the 1960s in Norway. Focusing on subalpine areas, we reported changes in species richness and community temperature index (CTI), a measure of the relative proportion of warm-and cold-adapted species, at low and high altitude. Using aerial photographs and meteorological data, we tested the relationship between climate and land-cover changes and changes in species richness and CTI. We observed an overall increase in CTI consistent with a gradual species turnover driven by climate change. There was on average an increase in species richness at high altitudes, while low-altitudes communities tended to become less species-rich. Moreover, we observed a negative correlation between species richness and temperature and precipitation trends, suggesting a detrimental effect of climate change. Thanks to the replication of an historical inventory, we were able to show evidence for an effect of climate, and possibly land-cover, change on subalpine bumblebee assemblages. These results can contribute to a better understanding of the processes driving biodiversity changes in subalpine areas in a context of global climate and landscape changes.
Increasing crop productivity to meet rising demands for food and energy, but doing so in an environmentally sustainable manner, is one of the greatest challenges for agriculture to date. In Ireland, Miscanthus 9 giganteus has the potential to become a major feedstock for bioenergy production, but the economic feasibility of its cultivation depends on high yields. Miscanthus fields can have a large number of gaps in crop cover, adversely impacting yield and hence economic viability. Predominantly positive effects of Miscanthus on biodiversity reported from previous research might be attributable to high crop patchiness, particularly during the establishment phase. The aim of this research was to assess crop patchiness on a field scale and to analyse the relationship between Miscanthus yield and species richness and abundance of selected taxa of farmland wildlife. For 14 Miscanthus fields at the end of their establishment phase (4-5 years after planting), which had been planted either on improved grassland (MG) or tilled arable land (MT), we determined patchiness of the crop cover, percentage light penetration (LP) to the lower canopy, Miscanthus shoot density and height, vascular plants and epigeic arthropods. Plant species richness and noncrop vegetation cover in Miscanthus fields increased with increasing patchiness, due to higher levels of LP to the lower canopy. The species richness of ground beetles and the activity density of spiders followed the increase in vegetation cover. Plant species richness and activity density of spiders on both MT and MG fields, as well as vegetation cover and activity density of ground beetles on MG fields, were negatively associated with Miscanthus yield. In conclusion, positive effects of Miscanthus on biodiversity can diminish with increasing productivity. This matter needs to be considered when assessing the relative ecological impacts of developing biomass crops in comparison with other land use.
1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk‐assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1,519 species were risk‐assessed, of which 1,183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so‐called door‐knockers, that is, species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door‐knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.