Background Augmented reality (AR), mixed reality (MR), and virtual reality (VR), realized as head-mounted devices (HMDs), may open up new ways of teaching medical content for low-resource settings. The advantages are that HMDs enable repeated practice without adverse effects on the patient in various medical disciplines; may introduce new ways to learn complex medical content; and may alleviate financial, ethical, and supervisory constraints on the use of traditional medical learning materials, like cadavers and other skills lab equipment. Objective We examine the effectiveness of AR, MR, and VR HMDs for medical education, whereby we aim to incorporate a global health perspective comprising low- and middle-income countries (LMICs). Methods We conducted a systematic review according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) and Cochrane guidelines. Seven medical databases (PubMed, Cochrane Library, Web of Science, Science Direct, PsycINFO, Education Resources Information Centre, and Google Scholar) were searched for peer-reviewed publications from January 1, 2014, to May 31, 2019. An extensive search was carried out to examine relevant literature guided by three concepts of extended reality (XR), which comprises the concepts of AR, MR, and VR, and the concepts of medicine and education. It included health professionals who took part in an HMD intervention that was compared to another teaching or learning method and evaluated with regard to its effectiveness. Quality and risk of bias were assessed with the Medical Education Research Study Quality Instrument, the Newcastle-Ottawa Scale-Education, and A Cochrane Risk of Bias Assessment Tool for Non-Randomized Studies of Interventions. We extracted relevant data and aggregated the data according to the main outcomes of this review (knowledge, skills, and XR HMD). Results A total of 27 studies comprising 956 study participants were included. The participants included all types of health care professionals, especially medical students (n=573, 59.9%) and residents (n=289, 30.2%). AR and VR implemented with HMDs were most often used for training in the fields of surgery (n=13, 48%) and anatomy (n=4, 15%). A range of study designs were used, and quantitative methods were clearly dominant (n=21, 78%). Training with AR- and VR-based HMDs was perceived as salient, motivating, and engaging. In the majority of studies (n=17, 63%), HMD-based interventions were found to be effective. A small number of included studies (n=4, 15%) indicated that HMDs were effective for certain aspects of medical skills and knowledge learning and training, while other studies suggested that HMDs were only viable as an additional teaching tool (n=4, 15%). Only 2 (7%) studies found no effectiveness in the use of HMDs. Conclusions The majority of included studies suggested that XR-based HMDs have beneficial effects for medical education, whereby only a minority of studies were from LMICs. Nevertheless, as most studies showed at least noninferior results when compared to conventional teaching and training, the results of this review suggest applicability and potential effectiveness in LMICs. Overall, users demonstrated greater enthusiasm and enjoyment in learning with XR-based HMDs. It has to be noted that many HMD-based interventions were small-scale and conducted as short-term pilots. To generate relevant evidence in the future, it is key to rigorously evaluate XR-based HMDs with AR and VR implementations, particularly in LMICs, to better understand the strengths and shortcomings of HMDs for medical education.
E-learning has been heralded as a revolutionary force for medical education, especially for low-resource countries still suffering from a dire lack of health care workers. However, despite over two decades of e-learning endeavors and interventions across sub-Saharan Africa and other low- and middle-income countries, e-learning for medical education has not gained momentum and continues to fall short of the anticipated revolution. Many e-learning interventions have been cul-de-sac pilots that have not been scaled up but rather terminated after the pilot phase. This is usually a result of not adopting a system-wide approach, which leads to insufficient scope of training, insufficient technological maintenance and user support, unattainably high expectations, and unrealistic financial planning. Thus, a multitude of e-learning evaluations have failed to provide scientifically sound evidence of the effectiveness of e-learning for medical education in low-resource countries. Instead, it appears that technological development has overwhelmed rather than revolutionized medical education. The question of how to push e-learning into a higher gear in low-resource countries persists. Provision of e-learning as a technology is insufficient. E-learning needs to be vigorously and sustainably integrated into the local educational setting and aligned with national strategies and other national endeavors and interventions. Adhering to a standardized framework for the implementation and evaluation of e-learning endeavors is key, especially to bridge the gap in robust evidence that should also guide e-learning implementations. The primary objective of e-learning for medical education is to strengthen the health system in order to serve the population’s health care needs and expectations. Currently, medical e-learning does not measure up to its potential or do justice to medical students in low-resource countries. Technology may help unfold the potential of e-learning, but an all-encompassing change is needed. This can only be achieved through a joint effort that follows a systematic and standardized framework, especially for implementation and evaluation.
Background Wearable devices hold great promise, particularly for data generation for cutting-edge health research, and their demand has risen substantially in recent years. However, there is a shortage of aggregated insights into how wearables have been used in health research. Objective In this review, we aim to broadly overview and categorize the current research conducted with affordable wearable devices for health research. Methods We performed a scoping review to understand the use of affordable, consumer-grade wearables for health research from a population health perspective using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework. A total of 7499 articles were found in 4 medical databases (PubMed, Ovid, Web of Science, and CINAHL). Studies were eligible if they used noninvasive wearables: worn on the wrist, arm, hip, and chest; measured vital signs; and analyzed the collected data quantitatively. We excluded studies that did not use wearables for outcome assessment and prototype studies, devices that cost >€500 (US $570), or obtrusive smart clothing. Results We included 179 studies using 189 wearable devices covering 10,835,733 participants. Most studies were observational (128/179, 71.5%), conducted in 2020 (56/179, 31.3%) and in North America (94/179, 52.5%), and 93% (10,104,217/10,835,733) of the participants were part of global health studies. The most popular wearables were fitness trackers (86/189, 45.5%) and accelerometer wearables, which primarily measure movement (49/189, 25.9%). Typical measurements included steps (95/179, 53.1%), heart rate (HR; 55/179, 30.7%), and sleep duration (51/179, 28.5%). Other devices measured blood pressure (3/179, 1.7%), skin temperature (3/179, 1.7%), oximetry (3/179, 1.7%), or respiratory rate (2/179, 1.1%). The wearables were mostly worn on the wrist (138/189, 73%) and cost <€200 (US $228; 120/189, 63.5%). The aims and approaches of all 179 studies revealed six prominent uses for wearables, comprising correlations—wearable and other physiological data (40/179, 22.3%), method evaluations (with subgroups; 40/179, 22.3%), population-based research (31/179, 17.3%), experimental outcome assessment (30/179, 16.8%), prognostic forecasting (28/179, 15.6%), and explorative analysis of big data sets (10/179, 5.6%). The most frequent strengths of affordable wearables were validation, accuracy, and clinical certification (104/179, 58.1%). Conclusions Wearables showed an increasingly diverse field of application such as COVID-19 prediction, fertility tracking, heat-related illness, drug effects, and psychological interventions; they also included underrepresented populations, such as individuals with rare diseases. There is a lack of research on wearable devices in low-resource contexts. Fueled by the COVID-19 pandemic, we see a shift toward more large-sized, web-based studies where wearables increased insights into the developing pandemic, including forecasting models and the effects of the pandemic. Some studies have indicated that big data extracted from wearables may potentially transform the understanding of population health dynamics and the ability to forecast health trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.