The specific chromosomal translocation t(X;1)(p11.2;q21.2) has been observed in human papillary renal cell carcinomas. In this study we demonstrated that this translocation results in the fusion of a novel gene designated PRCC at 1q21.2 to the TFE3 gene at Xp11.2. TFE3 encodes a member of the basic helix-loop-helix (bHLH) family of transcription factors originally identified by its ability to bind to microE3 elements in the immunoglobin heavy chain intronic enhancer. The translocation is predicted to result in the fusion of the N-terminal region of the PRCC protein, which includes a proline-rich domain, to the entire TFE3 protein. Notably the generation of the chimaeric PRCC-TFE3 gene appears to be accompanied by complete loss of normal TFE3 transcripts. This work establishes that the disruption of transcriptional control by chromosomal translocation is important in the development of kidney carcinoma in addition to its previously established role in the aetiology of sarcomas and leukaemias.
A t(X;1)(p11.2;q21.2) has been reported in cases of papillary renal cell tumors arising in males. In this study two cell lines derived from this tumor type have been used to indicate the breakpoint region on the X chromosome. Both cell lines have the translocation in addition to other rearrangements and one is derived from the first female case to be reported with the t(X;1)(p11.2;q21.2). Fluorescence in situ hybridization (FISH) has been used to position YACs belonging to contigs in the Xp11.2 region relative to the breakpoint. When considered together with detailed mapping information from the Xp11.2 region the position of the breakpoint in both cell lines was suggested as follows: Xpter→Xp11.23 – OATL1 – GATA1 – WAS – TFE3 – SYP – t(X;1) – DXS255 – CLCN5 – DXS146 – OATL2 – Xp11.22→Xcen. The breakpoint was determined to lie in an uncloned region between SYP and a YAC called FTDM/1 which extends 1 Mb distal to DXS255. These results are contrary to the conclusion from previous FISH studies that the breakpoint was near the OATL2 locus, but are consistent with, and considerably refine, the position that had been established by molecular analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.