Here we report for the first time the use of species-specific isotope dilution mass spectrometry for the absolute quantification of a metalloprotein using nondenaturing gel electrophoresis laser ablation inductively coupled plasma mass spectrometry (GE-LA-ICP-MS). The concept utilises the intrinsic metals of the metalloprotein for labelling of the isotopically labelled spike ((65)Cu, (68)Zn SOD). The stability of the metal-protein complex under non-denaturing conditions during 1-D PAGE was confirmed and the performance of the method evaluated. Between 4 and 64 microg, SOD was quantified with a recovery rate between 82% and 110% in a standard. The use of the isotopically enriched SOD was utilised to identify the extent of orthogonal diffusion in 1-D gel electrophoresis. Orthogonal diffusion of natural and isotopically enriched SOD in the gel can interfere with the correct determination of the isotope ratios. The matrix effect of a cytosolic liver extract on the non-covalently bound copper and zinc in SOD was evaluated and no significant metal loss from the SOD spike was observed. This study represents the first step necessary for establishing and evaluating the use of a species-specific isotope dilution approach for the absolute quantification of SOD in real samples based on the combination of gel electrophoresis and LA-ICP-MS.
Nicotinic acetylcholine receptors (nAChR) play important neurophysiological roles and are of considerable medical relevance. They have been studied extensively, greatly facilitated by the gastropod acetylcholine-binding proteins (AChBP) which represent soluble structural and functional homologues of the ligand-binding domain of nAChR. All these proteins are ring-like pentamers. Here we report that AChBP exists in the hemolymph of the planorbid snail Biomphalaria glabrata (vector of the schistosomiasis parasite) as a regular pentagonal dodecahedron, 22 nm in diameter (12 pentamers, 60 active sites). We sequenced and recombinantly expressed two ∼25 kDa polypeptides (BgAChBP1 and BgAChBP2) with a specific active site, N-glycan site and disulfide bridge variation. We also provide the exon/intron structures. Recombinant BgAChBP1 formed pentamers and dodecahedra, recombinant BgAChBP2 formed pentamers and probably disulfide-bridged di-pentamers, but not dodecahedra. Three-dimensional electron cryo-microscopy (3D-EM) yielded a 3D reconstruction of the dodecahedron with a resolution of 6 Å. Homology models of the pentamers docked to the 6 Å structure revealed opportunities for chemical bonding at the inter-pentamer interfaces. Definition of the ligand-binding pocket and the gating C-loop in the 6 Å structure suggests that 3D-EM might lead to the identification of functional states in the BgAChBP dodecahedron.
A continuous-flow microreactor was used to synthetize II-VI semiconductor quantum dots (CdSe). In order to improve the size distribution of the nanoparticles, the synthesis was carried out in a two-step procedure. A seed solution was obtained in a separate nucleation step, followed by a controllable growth step. Quantum dots that are synthesized with the two-step method show a much narrower size distribution in comparison to those obtained in a conventional batch synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.