Conventional methods for intraoperative histopathologic diagnosis are labour- and time-intensive, and may delay decision-making during brain-tumour surgery. Stimulated Raman scattering (SRS) microscopy, a label-free optical process, has been shown to rapidly detect brain-tumour infiltration in fresh, unprocessed human tissues. Here, we demonstrate the first application of SRS microscopy in the operating room by using a portable fibre-laser-based microscope and unprocessed specimens from 101 neurosurgical patients. We also introduce an image-processing method – stimulated Raman histology (SRH) – which leverages SRS images to create virtual haematoxylin-and-eosin-stained slides, revealing essential diagnostic features. In a simulation of intraoperative pathologic consultation in 30 patients, we found a remarkable concordance of SRH and conventional histology for predicting diagnosis (Cohen's kappa, κ > 0.89), with accuracy exceeding 92%. We also built and validated a multilayer perceptron based on quantified SRH image attributes that predicts brain-tumour subtype with 90% accuracy. Our findings provide insight into how SRH can now be used to improve the surgical care of brain tumour patients.
Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct.
Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery 1. The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive 2,3. Moreover, interpretation of intraoperative histologic images is dependent on a contracting, unevenly distributed pathology workforce 4. Here, we report a parallel workflow that combines stimulated Raman histology (SRH) 5-7 , a label-free optical imaging method, and deep convolutional neural networks (CNN) to predict diagnosis at the bedside in near real-time in an automated fashion. Specifically, our CNN, trained on over 2.5 million SRH images, predicts brain tumor diagnosis in the operating room in under 150 seconds, an order of magnitude faster than conventional techniques (e.g., 20-30 minutes) 2. In a multicenter, prospective clinical trial (n = 278) we demonstrated that CNN-based diagnosis of SRH images was non-inferior to pathologist-based interpretation of conventional histologic images (overall accuracy, 94.6% vs. 93.9%). Our CNN learned a hierarchy of recognizable histologic feature representations to classify the major histopathologic classes of brain tumors. Additionally, we implemented a semantic segmentation method to identify tumor infiltrated, diagnostic regions within SRH images. These results demonstrate how intraoperative cancer diagnosis can be streamlined, creating a complimentary pathway for tissue diagnosis that is independent of a traditional pathology laboratory.
Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a non-destructive, label-free optical method, to reveal glioma infiltration in animal models. Here we show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ=0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density and protein:lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density and protein:lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Importantly, quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery.
Objectives Expression of strong nuclear STAT6 is thought to be a specific marker for solitary fibrous tumors (SFT). Little is known about subtle expression patterns in other mesenchymal lesions. Methods We performed immunohistochemical studies against the C-terminus of STAT6 in tissue microarrays and whole sections, comprising 2366 mesenchymal lesions. Results Strong nuclear STAT6 was expressed in 285/2021 tumors, including 206/240 SFT, 49/408 well/dedifferentiated liposarcomas, 8/65 unclassified sarcomas, and 14/184 desmoids, among others. Expression in SFT was predominately limited to the nucleus. Other positive tumors typically expressed both nuclear and cytoplasmic STAT6. Complete absence of STAT6 was most common in pleomorphic liposarcoma and alveolar soft part sarcoma (60% and 72% cases negative, respectively). Conclusions Strong nuclear STAT6 is largely specific for SFT. Physiologic low-level cytoplasmic/nuclear expression is common in mesenchymal neoplasia, and is of uncertain significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.