Background: Planar cell polarity (PCP) in the Drosophila eye is generated when immature ommatidial preclusters acquire opposite chirality in the dorsal and ventral halves of the eye imaginal disc and rotate 90°toward the equator. The scabrous (sca) gene is involved in R8 differentiation and in the correct spacing of ommatidial clusters in eye imaginal discs, but it was also suggested to be required during ommatidial rotation. However, no clear relationships between sca and other genes involved in the process were established. Results: To explore the role of Sca in PCP establishment, we performed an RNAibased modifier genetic screen using the rough eye phenotype of sca-overexpressing flies. We found that sca overexpression mainly affects R3/R4 cell specification as it was reported in Notch mutants. Of the 86 modifiers identified in the screen, genes encoding components of Notch signaling and proteins involved in intracellular transport were of particular interest. Conclusions: These and other results obtained with a reporter line of Notch activity indicate that sca overexpression antagonizes Notch signaling in the Drosophila eye, and are inconsistent with Sca being an ommatidial rotation-specific factor. We also found that microtubule motors and other proteins involved in intracellular transport are related with Sca function. Developmental Dynamics 245:166-174, 2016. V C 2015 Wiley Periodicals, Inc.
Intercalation allows cells to exchange positions in a spatially oriented manner in an array of diverse processes, spanning convergent extension in embryonic gastrulation to the formation of tubular organs. However, given the co-occurrence of cell intercalation and changes in cell shape, it is sometimes difficult to ascertain their respective contribution to morphogenesis. A well-established model to analyse intercalation, particularly in tubular organs, is the
Drosophila
tracheal system. There, fibroblast growth factor (FGF) signalling at the tip of the dorsal branches generates a ‘pulling’ force believed to promote cell elongation and cell intercalation, which account for the final branch extension. Here, we used a variety of experimental conditions to study the contribution of cell elongation and cell intercalation to morphogenesis and analysed their mutual requirements. We provide evidence that cell intercalation does not require cell elongation and vice versa. We also show that the two cell behaviours are controlled by independent but simultaneous mechanisms, and that cell elongation is sufficient to account for full extension of the dorsal branch, while cell intercalation has a specific role in setting the diameter of this structure. Thus, rather than viewing changes in cell shape and cell intercalation as just redundant events that add robustness to a given morphogenetic process, we find that they can also act by contributing to different features of tissue architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.