The impact of cancer on lifespan is significantly increasing worldwide. Enhanced activity of drug efflux pumps and the incidences of the tumor microenvironment such as the apparition of a hypoxic gradient inside of the bulk tumor, are the major causes of chemotherapy failure. For instance, expression of Hypoxia-inducible factor (HIF-1α) has been associated with metastasis, resistance to chemotherapy and reduced survival rate. One of the current challenges to fight against cancer is therefore to find new molecules with therapeutic potential that could overcome this chemoresistance. In the present study, we focused on the bioactive plant flavonoid quercetin, which has strong antioxidant and anti-proliferative properties. We examined the efficacy of combined treatments of quercetin and the anti-cancer drugs gemcitabine and doxorubicin, known to specifically act on human pancreatic and hepatic cancer cells, respectively. Moreover, our study aimed to investigate more in-depth the implication of the multidrug transporter MDR1 and HIF-1α n chemoresistance and if quercetin could act on the activity of the drug efflux pumps and the hypoxia-associated effects. We observed that the anti-cancer drugs, were more effective when administered in combination with quercetin, as shown by an increased percentage of dead cells up to 60% in both 2D and 3D cultures. In addition, our results indicated that the combination of anti-cancer drugs and quercetin downregulated the expression of HIF-1α and increased the expression levels of the regulator of apoptosis p53. Moreover, we observed that quercetin could inhibit the efflux activity of MDR1. Finally, our in vitro study suggests that the efficiency of the chemotherapeutic activity of known anti-cancer drugs might be significantly increased upon combination with quercetin. This flavonoid may therefore be a promising pharmacological agent for novel combination therapy since it potentializes the cytotoxic activity of gemcitabine and doxorubicin on by targeting the chemoresistance developed by the pancreatic and liver cancer cells respectively.
The bioactive vitamin D3, 1α,25(OH)2D3, plays a central role in calcium homeostasis by controlling the activity of the vitamin D receptor (VDR) in various tissues. Hypercalcemia secondary to high circulating levels of vitamin D3 leads to hypercalciuria, nephrocalcinosis and renal dysfunctions. Current therapeutic strategies aim at limiting calcium intake, absorption and resorption, or 1α,25(OH)2D3 synthesis, but are poorly efficient. In this study, we identify WBP4 as a new VDR interactant, and demonstrate that it controls VDR subcellular localization. Moreover, we show that the vitamin D analogue ZK168281 enhances the interaction between VDR and WBP4 in the cytosol, and normalizes the expression of VDR target genes and serum calcium levels in 1α,25(OH)2D3-intoxicated mice. As ZK168281 also blunts 1α,25(OH)2D3-induced VDR signaling in fibroblasts of a patient with impaired vitamin D degradation, this VDR antagonist represents a promising therapeutic option for 1α,25(OH)2D3-induced hypercalcemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.