The RNA-binding protein AUF1 binds AU-rich elements in 3′-untranslated regions to regulate mRNA degradation and/or translation. Many of these mRNAs are predicted microRNA targets as well. An emerging theme in post-transcriptional control of gene expression is that RNA-binding proteins and microRNAs co-regulate mRNAs. Recent experiments and bioinformatic analyses suggest this type of co-regulation may be widespread across the transcriptome. Here, we identified mRNA targets of AUF1 from a complex pool of cellular mRNAs and examined a subset of these mRNAs to explore the links between RNA binding and mRNA degradation for both AUF1 and Argonaute 2 (AGO2), which is an essential effector of microRNA-induced gene silencing. Depending on the specific mRNA examined, AUF1 and AGO2 binding is proportional/cooperative, reciprocal/competitive or independent. For most mRNAs in which AUF1 affects their decay rates, mRNA degradation requires AGO2. Thus, AUF1 and AGO2 present mRNA-specific allosteric binding relationships for co-regulation of mRNA degradation.
Adult-onset Still's disease (AOSD) represents a systemic autoinflammatory disease (SAID), and its diagnostic criteria are clinical without genetic testing. Given shared manifestations between AOSD and hereditary SAIDs, molecular analysis may help differentiate these diseases. A PubMed literature search was conducted using key words "adult-onset Still's disease," "autoinflammatory disease," and "genetic mutation" between 1970 and February 2018. Articles on genetic mutations in the genes MEFV, TNFRSF1A, mevalonate kinase, or NOD2 for hereditary SAIDs in AOSD/systemic onset juvenile idiopathic arthritis (SJIA) patients were reviewed and analyzed. Five case series studies consisting of a total of 162 of both adult and pediatric patients were included. All patients fulfilled the Yamaguchi criteria for AOSD or the diagnostic criteria for SJIA. The results showed that 31.4% (51/162) of patients were identified to carry at least one genetic variant for periodic fever syndromes. In addition, four patients with the diagnosis of SJIA in other reports were confirmed to have FMF or TRAPS with molecular testing. These data together suggest that some patients who satisfy the clinical diagnostic criteria for AOSD/SOJIA could well be diagnosed with other SAIDs; genetic testing, particularly for those with atypical presentation can be supplementary to the accurate disease diagnosis by excluding other autoinflammatory diseases. AOSD is a diagnosis of exclusion and shares common manifestations with other SAIDs. The currently employed clinical criteria for AOSD can cause misdiagnosis. An updated set of classification criteria to integrate the molecular genetic analysis to exclude other autoinflammatory diseases is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.