PGE2 is a critical component of an amplifying and self-perpetuating circle inducing senescence and inflammation in COPD fibroblasts. Modulating the described PGE2 signaling pathway could provide a new basis to dampen senescence and senescence-associated inflammation in COPD.
We hypothesized that O2 tension influences the redox state and the immunomodulatory responses of inflammatory cells to dimethyl fumarate (DMF), an activator of the nuclear factor Nrf2 that controls antioxidant genes expression. This concept was investigated in macrophages permanently cultured at either physiological (5% O2) or atmospheric (20% O2) oxygen levels and then treated with DMF or challenged with lipopolysaccharide (LPS) to induce inflammation. RAW 264.7 macrophages cultured at 20% O2 exhibited a pro-oxidant phenotype, reflected by a lower content of reduced glutathione, higher oxidized glutathione and increased production of reactive oxygen species when compared to macrophages continuously grown at 5% O2. At 20% O2, DMF induced a stronger antioxidant response compared to 5% O2 as evidenced by a higher expression of heme oxygenase-1, NAD(P)H:quinone oxydoreductase-1 and superoxide dismutase-2. After challenge of macrophages with LPS, several pro-inflammatory (iNOS, TNF-α, MMP-2, MMP-9), anti-inflammatory (arginase-1, IL-10) and pro-angiogenic (VEGF-A) mediators were evaluated in the presence or absence of DMF. All markers, with few interesting exceptions, were significantly reduced at 5% O2. This study brings new insights on the effects of O2 in the cellular adaptation to oxidative and inflammatory stimuli and highlights the importance of characterizing the effects of chemicals and drugs at physiologically relevant O2 tension. Our results demonstrate that the common practice of culturing cells at atmospheric O2 drives the endogenous cellular environment towards an oxidative stress phenotype, affecting inflammation and the expression of antioxidant pathways by exogenous modulators.
Manufactured nanomaterials (MNMs) have the potential to improve everyday life as they can be utilised in numerous medical applications and day-to-day consumer products. However, this increased use has led to concerns about the potential environmental and human health impacts. The protein p53 is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti-inflammatory in macrophage responses to SWCNT and CB NMs. However, p53 was neither involved in MNM-induced cellular toxicity, nor in the apoptosis induced by these MNMs. Moreover, the physicochemical characteristics of MNMs seemed to influence their biological effects-SWCNT the materials with the largest surface area and a fibrous shape were the most cytotoxic in this study and were capable of the induction and activation of p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.