In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis.
The present paper further supports the hypothesis that MI plays a crucial role in the ovary in PCOS women. In particular, due to the physiological role played by MI and DCI, the combined therapy should represent a better choice.
Objective Myo-inositol (myoIns) has a positive role in mammalian development and human reproduction. Since experiments on farming species suggest a similar role in preimplantation development, we evaluated the hypothesis that the inclusion of myoIns in human embryo culture media would produce an increase in embryo quality in IVF cycles, using the mouse embryo assay. Methods To determine the effect of myoIns on completion of preimplantation development in vitro, one-cell embryos of the inbred C57BL/6N mouse strain were produced by ICSI, cultured in human fertilization media in the presence of myoIns (myoIns+) or in its absence (myoIns-) and evaluated morphologically. Daily progression through cleavage stages, blastocyst production and expansion and blastomere number at 96 hours post fertilization were assessed. Results Compared to myoIns-embryos, myoIns+ embryos displayed a faster cleavage rate and by the end of preimplantation development, the majority of myoIns+ blastocysts was expanded and formed by a higher number of blastomeres. Conclusion The presence of myoIns resulted in both an increase in proliferation activity and developmental rate of in vitro cultured early mouse embryos, representing a substantial improvement of culture conditions. These data may identify myoIns as an important supplement for human embryo preimplantation culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.