Cadmium is a known environmental pollutant targeting various organs. Often implicated in cadmium toxicology is the formation of reactive oxygen species, overwhelming the free radical scavenging mechanisms and inducing oxidative stress. Acute cadmium intoxication has been shown to reduce antioxidant enzyme activity and induce oxidative stress. However, chronic intoxication has obscure outcomes in oxidative stress while the cell makes adjustments to overcome the toxicant load. Also linked with the occurrence of oxidative stress is inflammation. Stimulation of acute or chronic inflammation is mediated by different cascades. However, key events include activation of transcription factor, NF-κB and release of pro-inflammatory cytokines. Both oxidative stress and inflammation are implicated simultaneously in pathogenesis and induction of multi-organ tissue damage under cadmium exposure. This article reviews the impact of acute and chronic cadmium intoxication on inducing oxidative stress, inflammation and thereby inflicting tissue damage.
Diet plays a major role in the body physiology and metabolism. The quantity, nature and stability of the macronutrients present in the diet have a major impact on the composition of gut microbiota. Gut microbiota plays a major role in the body metabolism and leads to obese or lean phenotype. Bacteriodetes, Firmicutes, Proteobacteria and Actinobacteria are the major microbes that inhabit in the region of the gut. We made an attempt to study the effects of Cafeteria (CAF) diets and normal chow diets on diet consumption, weight gain, metabolism and composition of gut microbiota in fecal and cecum samples from three weeks old Sprague Dawley (SD) rats (n = 18/group) using 16S rDNA high throughput sequencing. Results revealed that distinctive diet based phenotypical changes were observed in some of the Cafeteria diet fed rats. Interestingly, some weight gain resistant (WGR) animals in Cafeteria diet fed groups show similar trend like that of control normal chow fed rats. Fecal microbiome analysis indicates that the ratio of Bacteriodetes is higher than the Firmicutes in cecum samples of Cafeteria diet fed rats whereas no significant difference is found in fecal samples of Cafeteria diet fed rats and as well as in control rats. Further analysis of other taxa at the level of family and genus of microbial abundance are also discussed. Our study suggests that contribution of gut microbiota towards obesity is not at the phylum level, and microbiome composition even at the level of species or strain may exert impact on the metabolism of the Cafeteria diet.
Cadmium (Cd) is a naturally occurring toxic heavy metal with no known essential biological functions. Exposure to Cd increases the risk of cardiovascular disease by disrupting vascular homeostasis at the endothelium. The aim of the study was to evaluate the effect of chronic low-dose Cd on vascular structure and function. Fifty adult male Sprague Dawley rats were grouped and assigned to one of two treatments for 14 weeks. The control group received normal water for 14 weeks while the Cd-treated group received 15 mg Cd/kg B.W. as CdCl 2 in water for 10 weeks. A subset of the Cd-treated group received 15 mg Cd/kg B.W. as CdCl 2 in water for 10 weeks followed by 4 weeks of normal water. Results show an overall decline in vascular function and structure. Withdrawal of Cd treatment showed a considerable restoration of vascular structure and vasorelaxation function. Additionally, asymmetric dimethylarginine (ADMA) bioavailability was found to be lowered over time. Interestingly, the expression of eNOS in the Cd-treated group was found to be significantly elevated during the exposure by more than 3-fold in comparison with that in the control group. This protein expression was similar to the control group after the withdrawal of Cd treatment. Taken together, the results suggest that ADMA, an eNOS inhibitor, may play a role in altering endothelial function in the presence of cadmium. In conclusion, the findings indicate that even at low doses, Cd leads to endothelial dysfunction mediated by ADMA.
Cadmium (Cd) is a toxic heavy metal that is widespread in the environment due to the substantial anthropogenic inputs from the agriculture and industrial sectors. The toxic impact of Cd adversely affects human health and is linked with endocrine disruption, carcinogenicity, diabetes-related diseases, and metabolic disorder. One of the main characterizations of Cd is bioaccumulation where its half-life reaches 40 years with an unknown biological role. Several organs were found to be targets for Cd accumulation such as the liver, kidneys, and adipose tissue. Adipose tissue (AT) is a dynamic organ that plays a significant role in the body’s homeostasis through the maintenance of energy storage. Another vital function for AT is the secretion of adipokines which provides a metabolic cross-talk with the whole body’s organs. Cd is found to adversely impact the function of AT. This includes the disruption of adipogenesis, lipogenesis, and lipolysis. As a consequence, dysfunctional AT has disruptive patterns of adipokines secretions. The main adipokines produced from AT are leptin and adiponectin. Both were found to be significantly declined under the Cd exposure. Additionally, adipose tissue macrophages can produce either anti-inflammatory markers or pro-inflammatory markers depending on the local AT condition. Cadmium exposure was reported to upregulate pro-inflammatory markers and downregulate anti-inflammatory markers. However, the exact mechanisms of Cd’s adverse role on AT structure, function, and secretion patterns of adipokines are not totally clarified. Therefore, in this review, we present the current findings related to Cd detrimental effects on adipose tissues.
The aim of this study was to evaluate the role of chronic cadmium exposure in modulating cardiac matrix metalloproteinases (MMPs) in the heart of rats. Adult male Sprague-Dawley rats were exposed to 15 ppm CdCl2 in drinking water for 10 weeks followed by withdrawal of cadmium treatment for 4 weeks. Following the completion of the treatment, gene expression of inflammatory mediators (IL-1β, IL-6, IL-10, TNF-α and NF-κB), protein expression of MMP-2, MMP-9 and their respective inhibitors- TIMP-1 and TIMP-2, and gelatinolytic activity of MMP-2 and MMP-9 were determined. At the protein level, cadmium incites a differential effect on the expression and activity of gelatinases and their endogenous inhibitors in an exposure-dependent manner. Results also show that the administered cadmium dose elicits an inflammatory response until week 10 that slightly diminishes after 4 weeks. This study provides evidence of cadmium-induced imbalance in the MMP-TIMP system in the cardiac tissue. This imbalance may be mediated by cadmium-induced inflammation that could contribute to various cardiovascular pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.