Chagas is a neglected tropical disease caused by the parasite Trypanosoma cruzi with no effective treatment in all its forms. There is a need to find more effective therapeutic alternatives with reduced toxicity. In this contribution, multiple linear regression models were used to identify the molecular descriptors that best describe the inhibitory activity of 52 fenarimol analogues against Trypanosoma cruzi. The topological, physicochemical, thermodynamic, electronic, and charge descriptors were evaluated to cover a wide range of properties that frequently encode biological activity. A model with high predictive value was obtained based on geometrical descriptors and descriptors encoding hydrophobicity and London dispersion forces as necessary for the inhibition of Trypanosoma cruzi-CYP51. Docking methodology was implemented to evaluate molecular interactions in silico. The virtual screening results in this study can be used for rational design of new analogues with improved activity against Chagas disease.
This article describes a method of instruction using an active learning strategy for teaching stoichiometry through a process of gradual knowledge building. Students identify their misconceptions and progress through a sequence of questions based on the same chemical equation. An infrared device and software registered as the TurningPoint Audience Response System, which can be integrated into Microsoft PowerPoint, is used to instantly retrieve students’ answers and provide them with appropriate feedback. The usefulness of breaking down topics in a consistent way and, in particular, emphasizing the subjective interpretation of connectivity and mass relationships in chemistry was evident. Most students felt that the use of the immediate response system combined with cooperative social interactions was positive and contributed to their understanding of the topic.
Determination of the corresponding bond dissociation enthalpy, ionization potential and proton affinity, dipole moment values, highest occupied molecular orbital eigenvalues, and spin density along with the bioactivity score is central to the antioxidant activity evaluation in this paper. Molecular geometries were optimized with DFT using B3LYP and UB3LYP for parent, ionic, and radical species and 6-311+G(d,p) basis set. Bioactivity, drug likeness, and drug scores were calculated using freely available cheminformatics programs for data visualization and analysis. Overall, the values revealed two structures as promising molecules because of good reaction enthalpies (ΔHr). Lipinski rules were fully satisfied for all molecules.
A detailed quantum chemical study of the solvent effects in the intramolecular hydrogen bonding, conformational stability, and reactivity of aspirin has been performed using density functional theory (DFT) at the B3LYP/6‐31G(d) theory level. Seven conformational isomers, three of them presenting intramolecular hydrogen bonds, have been located. Thermochemical functions have been computed, and relative energies and free enthalpies have been determined in gas and aqueous phases. Several molecular properties have been calculated to predict the ability of aspirin to acylate cyclooxygenase (COX) enzymes. A six‐membered‐ring hydrogen‐bonded conformer was found to be the most reactive species. The solvation in aqueous phase increases the reactivity and strengthens intramolecular hydrogen bonding.
In 2020, Jennings found a way to take the nucleation rate for liquid→gas, according to BLANDER/KATZ J=AexpK, to J=f(K) in an exact theory, and K was evaluated exactly among the first two of the three papers in this chapter. The third paper gives the new proposed equation for the limit of superheat by addition of electrolyte because of a pattern. We see the pattern in the equations arising from the CLAUSIUS-CLAPEYRON relation (thermodynamics -boiling point elevation) and PRIGOGINE/MARECHAL (statistical mechanics -limit of superheat).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.