Background-Adipose tissue macrophages (ATMs) have become a focus of attention recently because they have been shown to accumulate with an increase in fat mass and to be involved in the genesis of insulin resistance in obese mice. However, the phenotype and functions of human ATMs are still to be defined. Methods and Results-The present study, performed on human subcutaneous AT, showed that ATMs from lean to overweight individuals are composed of distinct macrophage subsets based on the expression of several cell surface markers: CD45, CD14, CD31, CD44, HLA-DR, CD206, and CD16, as assessed by flow cytometry. ATMs isolated by an immunoselection protocol showed a mixed expression of proinflammatory (tumor necrosis factor-␣, interleukin-6 [IL-6], IL-23, monocyte chemoattractant protein-1, IL-8, cyclooxygenase-2) and antiinflammatory (IL-10, transforming growth factor-, alternative macrophage activation-associated cc chemokine-1, cyclooxygenase-1) factors. Fat mass enlargement is associated with accumulation of the CD206 ϩ /CD16 Ϫ macrophage subset that exhibits an M2 remodeling phenotype characterized by decreased expression of proinflammatory IL-8 and cyclooxygenase-2 and increased expression of lymphatic vessel endothelial hyaluronan receptor-1. ATMs specifically produced and released matrix metalloproteinase-9 compared with adipocytes and capillary endothelial cells, and secretion of matrix metalloproteinase-9 from human AT in vivo, assessed by arteriovenous difference measurement, was correlated with body mass index. Finally, ATMs exerted a marked proangiogenic effect on AT-derived endothelial and progenitor cells. Conclusions-The present results showed that the ATMs that accumulate with fat mass development exhibit a particular M2 remodeling phenotype. ATMs may be active players in the process of AT development through the extension of the capillary network and in the genesis of obesity-associated cardiovascular pathologies.
Adipose stroma/stem cells (ASC) represent an ideal source of autologous cells for cell-based therapy. Their transplantation enhances neovascularization after experimental ischemic injury. Aging is associated with a progressive decrease in the regenerative potential of mesenchymal stem cells (MSCs) from bone marrow. This work aims to determine the aging effect on human ASC capacities. First, we show that aging impairs angiogenic capacities of human ASC (hASC) in a mouse ischemic hindlimb model. Although no change in hASC number, phenotype, and proliferation was observed with aging, several mechanisms involved in the adverse effects of aging have been identified in vitro combining a concomitant decrease in (i) ASC ability to differentiate towards endothelial cells, (ii) secretion of proangiogenic and pro-survival factors, and (iii) oxidative stress. These effects were counteracted by a hypoxic preconditioning that improved in vivo angiogenic capacities of hASC from older donors, while hASC from young donors that have a strong ability to manage hypoxic stress were not. Finally, we identified reactive oxygen species (ROS) generation as a key signal of hypoxia on hASC angiogenic capacities. This study demonstrates for the first time that age of donor impaired angiogenic capacities of hASC in ischemic muscle and change in ROS generation by hypoxic preconditioning reverse the adverse effect of aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.