We studied the absorption line-shape of poly(p-phenylenevinylene) (PPV) films deposited via spin coating and Langmuir-Blodgett techniques with the intent of identifying the conjugation length distribution in these two types of films, a key morphological aspect of conjugated polymer films. We treated the excitons in the polymer as independent oligomer excitons and modeled the absorption spectra of the individual oligomers using simple expressions for the oligomer size dependence of the gap energy, the line-broadening factor, the transition dipole moment and the Huang-Rhys parameter. We validated these expressions by independent measurements on phenyl-based oligomers and Density Functional Theory calculations. Our results show clear evidence that, for both types of PPV films, the conjugation length distribution depends exponentially on the segment size. Our results also set a lower limit, of about ten repeat units, for the maximum exciton length of three different phenyl-based oligomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.