Over 4 million infants die each year from infections, many of which are vaccine-preventable. Young infants respond relatively poorly to many infections and vaccines, but the basis of reduced immunity in infants is ill defined. We sought to investigate whether myeloid-derived suppressor cells (MDSC) represent one potential impediment to protective immunity in early life, which may help inform strategies for effective vaccination prior to pathogen exposure. We enrolled healthy neonates and children in the first 2 years of life along with healthy adult controls to examine the frequency and function of MDSC, a cell population able to potently suppress T cell responses. We found that MDSC, which are rarely seen in healthy adults, are present in high numbers in neonates and their frequency rapidly decreases during the first months of life. We determined that these neonatal MDSC are of granulocytic origin (G-MDSC), and suppress both CD4+ and CD8+ T cell proliferative responses in a contact-dependent manner and gamma interferon production. Understanding the role G-MDSC play in infant immunity could improve vaccine responsiveness in newborns and reduce mortality due to early-life infections.
Background In women, single-dose nevirapine for prophylaxis against mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) selects for nevirapine-resistant HIV-1, which subsequently decays rapidly. We hypothesized that the selection, acquisition, and decay of nevirapine-resistant HIV-1 differs in infants, varying by the timing of HIV-1 infection. Methods We conducted a prospective, observational study of 740 Mozambican infants receiving single-dose nevirapine prophylaxis and determined the timing of infection and concentrations of nevirapine-resistant HIV-1 over time. Results Infants with established in utero infection had a high rate (87.0%) of selection of nevirapine-resistant HIV-1 mutants, which rapidly decayed to undetectable levels. The few without nevirapine resistance received zidovudine with single-dose nevirapine and/or their mothers took alternative antiretroviral drugs. Infants with acute in utero infection had a lower rate of nevirapine-resistant HIV-1 (33.3%; P =.006, compared with established in utero infection), but mutants persisted over time. Infants with peripartum infection also had a lower rate of nevirapine-resistant HIV-1 (38.1%; P =.001, compared with established in utero infection) but often acquired 100% mutant virus that persisted over time (P =.017, compared with established in utero infection). Conclusions The detection and persistence of nevirapine-resistant HIV-1 in infants after single-dose nevirapine therapy vary by the timing of infection and the antiretroviral regimen. In infants with persistent high-level nevirapine-resistant HIV-1, nevirapine-based antiretroviral therapy is unlikely to ever be efficacious because of concentrations in long-lived viral reservoirs. However, the absence or decay of nevirapine-resistant HIV-1 in many infants suggests that nevirapine antiretroviral therapy may be effective if testing can identify these individuals.
Background Transmitted drug resistance (TDR) is increasing in some areas of Africa. Detection of TDR may predict virologic failure of first-line non-nucleoside reverse-transcriptase inhibitor (NNRTI)-based antiretroviral therapy (ART). We evaluated the utility of a relatively inexpensive oligonucleotide ligation assay (OLA) to detect clinically relevant TDR at time of ART initiation. Methods Pre-ART plasmas from ART-naive Kenyans initiating an NNRTI-based fixed-dose combination ART in a randomized adherence trial conducted in 2006 were retrospectively analyzed by OLA for mutations conferring resistance to NNRTI (K103N, Y181C, and G190A) and lamivudine (M184V). Post-ART plasmas were analyzed for virologic failure (≥1,000 copies/mL) at 6 month intervals over 18-month follow-up. Pre-ART plasmas of those with virologic failure were evaluated for drug resistance by consensus and 454-pyrosequencing. Results Among 386 participants, TDR was detected by OLA in 3.89% [95% Confidence Interval (CI), 2.19-6.33], and was associated with a 10-fold higher rate of virologic failure [Hazard Ratio (HR), 10.39; 95% CI, 3.23-32.41; p<0.001) compared to those without TDR. OLA detected 24 TDR mutations (K103N, n=13; Y181C, n=5; G190A, n=3; M184V, n=3) in 15 subjects (NNRTI, n=15; 3TC, n=3). Among 51 participants who developed virologic failure, consensus sequencing did not detect additional TDR mutations conferring high-level resistance, and pyrosequencing only detected additional mutations at frequencies <2%. Mutant frequencies <2% at ART initiation were significantly less likely to be found at the time of virologic failure compared to frequencies ≥2% (22% vs. 63%; p<0.001). Conclusions Detection of TDR by a point mutation assay may prevent use of sub-optimal ART.
During chronic lentiviral infection, poor clinical outcomes correlate both with systemic inflammation and poor proliferative ability of HIV-specific T cells, however the connection between the two is not clear. MDSC2, suppressive myeloid cells that expand during states of elevated circulating inflammatory cytokines, may link the systemic inflammation and poor T cell function characteristic of lentiviral infections. While MDSC are partially characterized in HIV and SIV infection, questions remain regarding their persistence, activity and clinical significance. We monitored MDSC frequency and function in SIV infected rhesus macaques. Low MDSC frequency was observed prior to SIV infection. Post-SIV infection, MDSC were elevated in acute infection and persisted during 7 months of cART3. After cART interruption, we observed MDSC expansion of surprising magnitude, the majority being gMDSC4. At all stages of infection, gMDSC suppressed CD4+ and CD8+ T cell proliferation in response to polyclonal or SIV-specific stimulation. In addition, MDSC frequency correlated significantly with circulating inflammatory cytokines. Acute and post-cART levels of viremia were similar, however, the levels of inflammatory cytokines and MDSC were more pronounced post-cART. Expanded MDSC during SIV infection, especially during the post-cART inflammatory cytokine surge, likely limit cellular responses to infection. As many HIV curative strategies require cART interruption to determine efficacy, our work suggests treatment interruption-induced MDSC may especially undermine effectiveness of such strategies. MDSC depletion may enhance T cell responses to lentiviral infection and effectiveness of curative approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.