Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002-2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y 2 ) are offset by a negative hydrological component (−0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to −2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations.lobal sea-level rise has been identified as one of the major threats associated with global climate change (1, 2). However, from the perspective of assessment-and decision-making, regional estimates of sea-level rise are even more important to formulate meaningful adaptation plans on a national or international level. Besides the magnitude of the total sea-level rise itself, identifying dominant drivers, and their corresponding uncertainties, may also prove beneficial for projection studies.Historical records from tide gauges indicate a sea-level rate of about 1.7 mm/y over the period 1900-2009, where it must be noted that tide gauges indicate an acceleration (0.009-0.017 mm/y 2 ) over the last century (3-5). Besides the steric expansion of sea water due to temperature changes, the ongoing melting and ablation of ice sheets in Greenland and Antarctica and other land glaciers cause the sea level to rise. Hydrological mass variability on land and reservoir construction have been found to cause a negative trend (6-9). Furthermore, meltwater, precipitation, or evaporation result in regional salinity changes, leaving steric signatures in sea level once the barotropic component has been compensated (10). For an observer at the coast, crustal movement, caused by glacial isostatic adjustment (GIA), tectonics, or local subsidence may also significantly affect the r...