Human Blepharophimosis/ptosis/epicanthus inversus syndrome (BPES) type I is an autosomal dominant disorder associated with premature ovarian failure (POF)caused by mutations in FOXL2, a winged-helix/forkhead domain transcription factor. Although it has been shown that FOXL2 is expressed in adult ovaries, its function during folliculogenesis is not known. Here, we show that the murine Foxl2 gene is essential for granulosa cell differentiation and ovary maintenance. In Foxl2lacZ homozygous mutant ovaries granulosa cells do not complete the squamous to cuboidal transition leading to the absence of secondary follicles and oocyte atresia. We further demonstrate that activin-βA and anti-Mullerian inhibiting hormone expression is absent or strongly diminished in Foxl2lacZ homozygous mutant ovaries. Unexpectedly, two weeks after birth most if not all oocytes expressed Gdf9 in Foxl2lacZ homozygous mutant ovaries, indicating that nearly all primordial follicles have already initiated folliculogenesis at this stage. This activation, in the absence of functional granulosa cells, leads to oocyte atresia and progressive follicular depletion. In addition to providing a molecular mechanism for premature ovarian failure in BPES, these results suggest that granulosa cell function is not only crucial for oocyte growth but also to maintain follicular quiescence in vivo.
We describe the generation of transgenic mouse lines expressing the Cre recombinase enzyme in brain under control of the CamKIIalpha gene present in a BAC expression vector. The CamKIIalpha BAC transgene gave a faithful expression pattern resembling the pattern of the endogenous CamKIIalpha gene. Specifically, high levels of CamKIIalpha Cre were detected in hippocampus, cortex, and amygdala, and lower levels were detected in striatum, thalamus, and hypothalamus. As expected, no expression was detected in the cerebellum or outside of the brain. The expression level of the BAC CamKIIalpha driven Cre was shown to be copy number dependent. To test the activity of the Cre recombinase, the transgenic mice were crossed with mice harbouring the CREB (cAMP response element binding protein) allele with the 10th exon flanked by two loxP sites, and recombination was monitored by the disappearance of the CREB protein. Finally, evaluation of the developmental postnatal expression of the CamKIIalpha Cre BAC revealed the expression of the Cre recombinase as early as P3.
The Cre-loxP system is increasingly exploited for spatial and temporal gene inactivation. Here we present a novel approach to achieve this goal of selective gene inactivation. Following the model of alpha complementation in the beta-galactosidase enzyme, where the enzyme is split into independent polypeptides which are able to associate and maintain the enzymatic activity, we divided the Cre recombinase into two independent polypeptides (one containing the NH(2) terminus (alpha) and a second one containing the COOH-terminus (beta)). Individually, the two polypeptides have no detectable activity. However, when coexpressed the polypeptides are able to associate, giving rise to Cre enzymatic activity, which optimally is as high as 30% of that seen with wildtype Cre recombinase in vitro. We present this strategy as a modification of the traditional Cre-loxP system, which could be used to obtain a highly specific recombination pattern by expressing the two halves under the control of separate promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.