The hair follicle is a biological oscillator that alternates growth, regression, and rest phases driven by the sequential activation of the proliferation/differentiation programs of resident stem cell populations. The activation of hair follicle stem cell niches and subsequent entry into the growing phase is mainly regulated by Wnt/β-catenin signalling, while regression and resting phases are mainly regulated by Tgf-β/Bmp/Smad activity. A major question still unresolved is the nature of the molecular switch that dictates the coordinated transition between both signalling pathways. Here we have focused on the role of Endoglin (Eng), a key co-receptor for members of the Tgf-β/Bmp family of growth factors.Using an Eng haploinsufficient mouse model, we report that Eng is required to maintain a correct follicle cycling pattern and for an adequate stimulation of hair follicle stem cell niches. We further report that β-catenin binds to the Eng promoter depending on Bmp signalling. Moreover, we show that β-catenin interacts with Smad4 in a Bmp/Eng-dependent context and both proteins act synergistically to activate Eng promoter transcription. These observations point to the existence of a growth/rest switching mechanism in the hair follicle that is based on an Eng-dependent feedback crosstalk between Wnt/β-catenin and Bmp/Smad signals.
Glycosaminoglycans (GAGs) and associated proteoglycans have important functions in homeostatic maintenance and regenerative processes (e.g., wound repair) of the skin. However, little is known about the role of these molecules in the regulation of the hair follicle cycle. Here we report that growing human hair follicles ex vivo in a defined GAG hydrogel mimicking the dermal matrix strongly promotes sustained cell survival and maintenance of a highly proliferative phenotype in the hair bulb and suprabulbar regions. This significant effect is associated with the activation of WNT/β-catenin signaling targets (CCDN1, AXIN2) and with the expression of stem cell markers (CK15, CD34) and growth factors implicated in the telogen/anagen transition (TGFβ2, FGF10). As a whole, these results point to the dermal GAG matrix as an important component in the regulation of the human hair follicle growth cycle, and to GAG-based hydrogels as potentially relevant modulators of this process both in vitro and in vivo.
The hair follicle is a biological oscillator that alternates growth, regression and rest phases driven by the sequential activation of the proliferation/differentiation programs of resident stem cell populations. The activation of hair follicle stem cell niches and subsequent entry into the growing phase is mainly regulated by Wnt/β-catenin signalling, while regression and resting phases are mainly regulated by Tgf-β/Bmp/Smad activity. A major question still unresolved is the nature of the molecular switch that dictates the coordinated transition between both signalling pathways. Here we have focused on the role of Endoglin (Eng), a key coreceptor for members of the Tgf-β/Bmp family of growth factors.Using an Eng haploinsufficient mouse model we report that Eng is required to maintain a correct follicle cycling pattern and for an adequate stimulation of hair follicle stem cell niches. We further report that β -catenin binds to the Eng promoter depending on Bmp signalling. Moreover, we show that β -catenin interacts with Smad4 in a Bmp/Eng dependent context and both proteins act synergistically to activate Eng promoter transcription. These observations point to the existence of a growth/rest switching mechanism in the hair follicle that is based on an Eng-dependent feedback crosstalk between Wnt/β-catenin and Bmp/Smad signals. peer-reviewed)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.