The success of the increasing use of technology in education is highly dependent on learner acceptance. Although the Technology Acceptance Model (TAM) is dominant in research for surveying acceptance of technology, it does not allow the prediction of a successful first time use of technology. The successful first time use can be determined with the survey of technology affinity, as it corresponds to the expression of certain personality traits of users and is thus detached from the specific technology. Since there are no measurement instruments for the educational sector so far and existing instruments for measuring technology affinity do not meet the specific requirements for use in the educational context (e.g., limited time for questioning), we present the single item Inclusion of Technology Affinity in Self-Scale (ITAS). In study 1 we provide evidence of convergent and discriminant validity within the general population so that a generalization of its applicability is possible. In study 2 we subsequently tested ITAS in the actual target group, the educational sector. The high correlations of the ITAS with the ATI and the control instrument TA-EG (ranging from rs = 0.679 to rs = 0.440) show that ITAS is suitable for use in research. Furthermore, the newly developed instrument convinces with its low complexity, the graphical component, which requires little text understanding and the high time saving. This research thus can contribute to the investigation of technology affinity in the educational sector helping educators to conduct technical activities with their learning group, to predict possible difficulties and adjust their planning accordingly.
Out-of-school laboratories, also called student labs, are an advantageous opportunity to teach biological subjects. Particularly in the case of complex fields such as neurobiology, student labs offer the opportunity to learn about difficult topics in a practical way. Due to numerous advantages, digital student labs are becoming increasingly popular nowadays. In this study, we investigated the effect of an electrophysiological setup for a virtual experiment with and without hands-on elements on participant motivation and technology acceptance. For this purpose, 235 students were questioned during a student laboratory day. The surveyed students showed high motivation and technology acceptance for the virtual experiment. In the comparison, the electrophysiological setup with hands-on elements performs better in the intrinsic components than the setup without hands-on elements: Thus, the hands-on approach is rated as more interesting and the perceived enjoyment scores higher. Nevertheless, both experimental groups show high values, so that the results of the study support the positive influence of digital laboratory as well as a positive influence of hands-on elements.
Behavioral biology is a field that students find fascinating. To get the most out of the various benefits of teaching it, a practical approach should be followed. One way to do this is to use video recordings of animals which are analyzed using various software. However, learners will only benefit from this approach if they choose to actually use the provided technology. Therefore, it is critical to survey learners’ acceptance towards the use of software in the field of behavioral biology. For this purpose, 171 students were questioned at an out-of-school student lab called “KILab.” By applying the Technology Acceptance Model (TAM), we investigated students’ acceptance of authentic behavior evaluation software and possible factors influencing it. In addition, potential effects of the student lab on attitudes toward artificial intelligence and technology affinity were examined. The results show a high technology acceptance toward the used software and a dependence of this on the factors technology affinity and acceptance toward artificial intelligence. Furthermore, the use of the software has a positive impact on the self-assessed technology affinity and attitude toward artificial intelligence.The study thus shows that the use of video recordings and software for behavior analysis is generally suitable for educational use and can be a possible extension of the practical implementation of behavioral science education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.