The onset of sub-critical crack growth during slow strain rate tensile testing (SSRT) is assessed through a combined experimental and modeling approach. A systematic comparison of the extent of intergranular fracture and expected hydrogen ingress suggests that hydrogen diffusion alone is insufficient to explain the intergranular fracture depths observed after SSRT experiments in a Ni-Cu superalloy. Simulations of these experiments using a new phase field formulation indicate that crack initiation occurs as low as 40% of the time to failure. The implications of such sub-critical crack growth on the validity and interpretation of SSRT metrics are then explored.
We present a probabilistic framework for brittle fracture that builds upon Weibull statistics and strain gradient plasticity. The constitutive response is given by the mechanism-based strain gradient plasticity theory, aiming to accurately characterize crack tip stresses by accounting for the role of plastic strain gradients in elevating local strengthening ahead of cracks. It is shown case of gradient-enhanced plasticity. Finally, the fracture response across the ductile-to-brittle regime is investigated by computing the cleavage resistance curves with increasing temperature. Gradient plasticity predictions appear to show a better agreement with the experiments.
Due to its superior modelling capabilities, there is an increasing interest in distortion gradient plasticity theory, where the role of the plastic spin is accounted for in the free energy and the dissipation. In this work, distortion gradient plasticity is used to gain insight into material deformation ahead of a crack tip. This also constitutes the first fracture mechanics analysis of gradient plasticity theories adopting Nye's tensor as primal kinematic variable.First, the asymptotic nature of crack tip fields is analytically investigated. A generalised J-integral is defined and employed to determine the power of the singularity. We show that an inner elastic region exists, adjacent to the crack tip, where elastic strains dominate plastic strains and Cauchy stresses follow the linear elastic r −1 2 stress singularity. This finding is verified by detailed finite element analyses using a new numerical framework, which builds upon a viscoplastic constitutive law that enables capturing both rate-dependent and rate-independent behaviour in a computationally efficient manner. Numeri-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.