Introduction: The increasing prevalence of uropathogenic Escherichia coli (UPEC) strains resistant to multiple antibiotics complicates the treatment of urinary tract infections (UTIs). This study aimed to analyze the antimicrobial resistance, serotypes, and phylogenetic groups among strains of E. coli isolated from outpatients with UTIs in Mexico City. Methodology: A total of 119 E. coli isolates were recovered from urine samples from outpatients with clinical diagnosis of uncomplicated UTIs from 2004 to 2007. The serotype was assessed by agglutination in microtiter plates; susceptibility to antimicrobials was determined by the disk diffusion method. Clone O25-ST131 and phylogenetic groups of E. coli strains were tested by methods based on PCR multiplex. Results: The predominant serotype was O25:H4 (21.2%). Resistance to antibiotics was ampicillin (83.7%); piperacillin (53.8%); the fluoroquinolone group (55.5-60.6%), and trimethoprim/sulfamethoxazole (TMP/SMX) (56.4%). Additionally, 36 (30.2%) isolates were multidrug-resistant and 13 of these 36 strains were identified as E. coli O25-ST131 clone by an allele-specific PCR-based assay. Phylogenetic analysis showed that 15 of 17 isolates with serotype O25:H4 belonged to group B2. Conclusions: This is the first report that establishes the presence in Mexico of the O25-ST131 clonal group of E. coli, which has been associated with multidrug-resistance and with high virulence potential. The spread of this clone in Mexico should be monitored closely. We found a correlation between serotype O25:H4 and multidrug resistance in UPEC strains. Our results indicate that the use of ampicillin, fluoroquinolones, and TMP/SMX should be reviewed when selecting empirical therapy for UTIs.
Enteropathogenic Escherichia coli (EPEC) produces a characteristic attaching and effacing (A/E) lesion in the small intestines of infected children. The immune response to EPEC infection remains poorly characterized. The molecular targets that elicit protective immunity against EPEC disease are unknown. In this study protein antigens from EPEC were identified using secretory immunoglobulin A (sIgA) antibodies isolated from milk from Mexican women by Western blot analysis. Purified sIgA antibodies, which inhibit the adherence of EPEC to cells, reacted to many EPEC proteins, the most prominent of which were intimin (a 94-kDa outer membrane protein) and two unknown proteins with apparent molecular masses of 80 and 70 kDa. A culture supernatant protein of 110 kDa also reacted strongly with the sIgA antibodies. The molecular size of this protein and its reactivity with specific anti-EspC antiserum suggest that it is EPEC-secreted protein C (EspC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.