VectorBase is a National Institute of Allergy and Infectious Diseases supported Bioinformatics Resource Center (BRC) for invertebrate vectors of human pathogens. Now in its 11th year, VectorBase currently hosts the genomes of 35 organisms including a number of non-vectors for comparative analysis. Hosted data range from genome assemblies with annotated gene features, transcript and protein expression data to population genetics including variation and insecticide-resistance phenotypes. Here we describe improvements to our resource and the set of tools available for interrogating and accessing BRC data including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows. VectorBase also actively supports our community through hands-on workshops and online tutorials. All information and data are freely available from our website at https://www.vectorbase.org/.
Genome resequencing with short reads generally relies on alignments against a single reference. GenomeMapper supports simultaneous mapping of short reads against multiple genomes by integrating related genomes (e.g., individuals of the same species) into a single graph structure. It constitutes the first approach for handling multiple references and introduces representations for alignments against complex structures. Demonstrated benefits include access to polymorphisms that cannot be identified by alignments against the reference alone. Download GenomeMapper at
International audienceThis special issue and our editorial celebrate 10 years of progress with data-intensive or scientific workflows. There have been very substantial advances in the representation of workflows and in the engineering of workflow management systems (WMS). The creation and refinement stages are now well supported, with a significant improvement in usability. Improved abstraction supports cross-fertilisation between different workflow communities and consistent interpretation as WMS evolve. Through such re-engineering the WMS deliver much improved performance, significantly increased scale and sophisticated reliability mechanisms. Further improvement is anticipated from substantial advances in optimisation. We invited papers from those who have delivered these advances and selected 14 to represent today's achievements and representative plans for future progress. This editorial introduces those contributions with an overview and categorisation of the papers. Furthermore, it elucidates responses from a survey of major workflow systems, which provides evidence of substantial progress and a structured index of related papers. We conclude with suggestions on areas where further research and development is needed and offer a vision of future research directions
The explosion of the data both in the biomedical research and in the healthcare systems demands urgent solutions. In particular, the research in omics sciences is moving from a hypothesis-driven to a data-driven approach. Healthcare is additionally always asking for a tighter integration with biomedical data in order to promote personalized medicine and to provide better treatments. Efficient analysis and interpretation of Big Data opens new avenues to explore molecular biology, new questions to ask about physiological and pathological states, and new ways to answer these open issues. Such analyses lead to better understanding of diseases and development of better and personalized diagnostics and therapeutics. However, such progresses are directly related to the availability of new solutions to deal with this huge amount of information. New paradigms are needed to store and access data, for its annotation and integration and finally for inferring knowledge and making it available to researchers. Bioinformatics can be viewed as the “glue” for all these processes. A clear awareness of present high performance computing (HPC) solutions in bioinformatics, Big Data analysis paradigms for computational biology, and the issues that are still open in the biomedical and healthcare fields represent the starting point to win this challenge.
We here present the experiences collected maintaining and updating the MoSGrid science gateway over the past years. Insights are provided on a technical and organizational level useful for the design and operation of science gateways in general. The specific challenges faced and solved are considered to be valuable for other communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.