Ogura cytoplasmic male sterility (CMS) in radish (Raphanus sativus) is caused by an aberrant mitochondrial gene, Orf138, that prevents the production of functional pollen without affecting female fertility. Rfo, a nuclear gene that restores male fertility, alters the expression of Orf138 at the post-transcriptional level. The Ogura CMS/Rfo two-component system is a useful model for investigating nuclear-cytoplasmic interactions, as well as the physiological basis of fertility restoration. Using a combination of positional cloning and microsynteny analysis of Arabidopsis thaliana and radish, we genetically and physically delimited the Rfo locus to a 15-kb DNA segment. Analysis of this segment shows that Rfo is a member of the pentatricopeptide repeat (PPR) family. In Arabidopsis, this family contains more than 450 members of unknown function, although most of them are predicted to be targeted to mitochondria and chloroplasts and are thought to have roles in organellar gene expression.
Crossover (CO) is a key process for the accurate segregation of homologous chromosomes during the first meiotic division. In most eukaryotes, meiotic recombination is not homogeneous along the chromosomes, suggesting a tight control of the location of recombination events. We genotyped 71 single nucleotide polymorphisms (SNPs) covering the entire chromosome 4 of Arabidopsis thaliana on 702 F2 plants, representing 1404 meioses and allowing the detection of 1171 COs, to study CO localization in a higher plant. The genetic recombination rates varied along the chromosome from 0 cM/Mb near the centromere to 20 cM/Mb on the short arm next to the NOR region, with a chromosome average of 4.6 cM/Mb. Principal component analysis showed that CO rates negatively correlate with the G+C content (P =3x10(-4)), in contrast to that reported in other eukaryotes. COs also significantly correlate with the density of single repeats and the CpG ratio, but not with genes, pseudogenes, transposable elements, or dispersed repeats. Chromosome 4 has, on average, 1.6 COs per meiosis, and these COs are subjected to interference. A detailed analysis of several regions having high CO rates revealed "hot spots" of meiotic recombination contained in small fragments of a few kilobases. Both the intensity and the density of these hot spots explain the variation of CO rates along the chromosome
The application of high-throughput SNP genotyping is a great challenge for many research projects in the plant genetics domain. The GOOD assay for mass spectrometry, Amplifluor and TaqMan are three methods that rely on different principles for allele discrimination and detection, specifically, primer extension, allele-specific PCR and hybridization, respectively. First, with the goal of assessing allele frequencies by means of SNP genotyping, we compared these methods on a set of three SNPs present in the herbicide resistance genes CSR, AXR1 and IXR1 of Arabidopsis thaliana. In this comparison, we obtained the best results with TaqMan based on PCR specificity, flexibility in primer design and success rate. We also used mass spectrometry for genotyping polyploid species. Finally, a combination of the three methods was used for medium- to high-throughput genotyping in a number of different plant species. Here, we show that all three genotyping technologies are successful in discriminating alleles in various plant species and discuss the factors that must be considered in assessing which method to use for a given application.
A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.