Plants have evolved sophisticated defense mechanisms against pathogen infections, during which resistance ( R ) genes play central roles in recognizing pathogens and initiating defense cascades. Most of the cloned R genes share two common domains: the central domain, which encodes a nucleotide binding adaptor shared by APAF-1, certain R proteins, and CED-4 (NB-ARC), plus a C-terminal region that encodes Leu-rich repeats (LRR). In Arabidopsis, a dominant mutant, suppressor of npr1-1 , constitutive 1 ( snc1 ), was identified previously that constitutively expresses pathogenesis-related ( PR ) genes and resistance against both Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2. The snc1 mutation was mapped to the RPP4 cluster. In snc1 , one of the TIR-NB-LRR-type R genes contains a point mutation that results in a single amino acid change from Glu to Lys in the region between NB-ARC and LRR. Deletions of this R gene in snc1 reverted the plants to wild-type morphology and completely abolished constitutive PR gene expression and disease resistance. The constitutive activation of the defense responses was not the result of the overexpression of the R gene, because its expression level was not altered in snc1 . Our data suggest that the point mutation in snc1 renders the R gene constitutively active without interaction with pathogens. To analyze signal transduction pathways downstream of snc1 , epistasis analyses between snc1 and pad4-1 or eds5-3 were performed. Although the resistance signaling in snc1 was fully dependent on PAD4 , it was only partially affected by blocking salicylic acid (SA) synthesis, suggesting that snc1 activates both SA-dependent and SA-independent resistance pathways.
SummaryPlant defences require a multitude of tightly regulated resistance responses. In Arabidopsis, the unique gainof-function mutant suppressor of npr1-1 constitutive 1 (snc1) carries a point mutation in a Resistance (R)-gene, resulting in constitutive activation of defence responses without interaction with pathogens. This has allowed us to identify various downstream signalling components essential in multiple defence pathways. One mutant that suppresses snc1-mediated constitutive resistance is modifier of snc1 5 (mos5), which carries a 15-bp deletion in UBA1, one of two ubiquitin-activating enzyme genes in Arabidopsis. A mutation in UBA2 does not suppress snc1, suggesting that these two genes are not equally required in Arabidopsis disease resistance. On the other hand, a mos5 uba2 double mutant is lethal, implying partial redundancy of the two homologues. Apart from affecting snc1-mediated resistance, mos5 also exhibits enhanced disease susceptibility to a virulent pathogen and is impaired in response to infection with avirulent bacteria carrying the protease elicitor AvrRpt2. The mos5 mutation in the C-terminus of UBA1 might affect binding affinity of the downstream ubiquitin-conjugating enzymes, thus perturbing ubiquitination of target proteins. Furthermore, SGT1b and RAR1, which are necessary for resistance conferred by the SNC1-related R-genes RPP4 and RPP5, are dispensable in snc1-mediated resistance. Our data reveal the definite requirement for the ubiquitination pathway in the activation and downstream signalling of several R-proteins.
In plants, specific recognition of pathogen effector proteins by nucleotide-binding leucine-rich repeat (NLR) receptors leads to activation of immune responses. RPP1, an NLR from Arabidopsis thaliana, recognizes the effector ATR1, from the oomycete pathogen Hyaloperonospora arabidopsidis, by direct association via C-terminal leucine-rich repeats (LRRs). Two RPP1 alleles, RPP1-NdA and RPP1-WsB, have narrow and broad recognition spectra, respectively, with RPP1-NdA recognizing a subset of the ATR1 variants recognized by RPP1-WsB. In this work, we further characterized direct effector recognition through random mutagenesis of an unrecognized ATR1 allele, ATR1-Cala2, screening for gain-of-recognition phenotypes in a tobacco hypersensitive response assay. We identified ATR1 mutants that a) confirm surface-exposed residues contribute to recognition by RPP1, and b) are recognized by and activate the narrow-spectrum allele RPP1-NdA, but not RPP1-WsB, in co-immunoprecipitation and bacterial growth inhibition assays. Thus, RPP1 alleles have distinct recognition specificities, rather than simply different sensitivity to activation. Using chimeric RPP1 constructs, we showed that RPP1-NdA LRRs were sufficient for allele-specific recognition (association with ATR1), but insufficient for receptor activation in the form of HR. Additional inclusion of the RPP1-NdA ARC2 subdomain, from the central NB-ARC domain, was required for a full range of activation specificity. Thus, cooperation between recognition and activation domains seems to be essential for NLR function.
Plants utilize tightly regulated mechanisms to defend themselves against pathogens. Initial recognition results in activation of specific Resistance (R) proteins that trigger downstream immune responses, in which the signaling networks remain largely unknown. A point mutation in SUPPRESSOR OF NPR1 CONSTITUTIVE1 (SNC1), a RESISTANCE TO PERONOSPORA PARASITICA4 R gene homolog, renders plants constitutively resistant to virulent pathogens. Genetic suppressors of snc1 may carry mutations in genes encoding novel signaling components downstream of activated R proteins. One such suppressor was identified as a novel loss-of-function allele of ENHANCED RESPONSE TO ABSCISIC ACID1 (ERA1), which encodes the β-subunit of protein farnesyltransferase. Protein farnesylation involves attachment of C15-prenyl residues to the carboxyl termini of specific target proteins. Mutant era1 plants display enhanced susceptibility to virulent bacterial and oomycete pathogens, implying a role for farnesylation in basal defense. In addition to its role in snc1-mediated resistance, era1 affects several other R-protein-mediated resistance responses against bacteria and oomycetes. ERA1 acts partly independent of abscisic acid and additively with the resistance regulator NON-EXPRESSOR OF PR GENES1 in the signaling network. Defects in geranylgeranyl transferase I, a protein modification similar to farnesylation, do not affect resistance responses, indicating that farnesylation is most likely specifically required in plant defense signaling. Taken together, we present a novel role for farnesyltransferase in plant-pathogen interactions, suggesting the importance of protein farnesylation, which contributes to the specificity and efficacy of signal transduction events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.