BackgroundChronic obstructive pulmonary disease and emphysema are a frequent result of long-term smoking, but the exact mechanisms, specifically which types of cells are associated with the lung destruction, are unclear.Methods and FindingsWe studied different subsets of lymphocytes taken from portions of human lungs removed surgically to find out which lymphocytes were the most frequent, which cell-surface markers these lymphocytes expressed, and whether the lymphocytes secreted any specific factors that could be associated with disease. We found that loss of lung function in patients with chronic obstructive pulmonary disease and emphysema was associated with a high percentage of CD4+ and CD8+ T lymphocytes that expressed chemokine receptors CCR5 and CXCR3 (both markers of T helper 1 cells), but not CCR3 or CCR4 (markers of T helper 2 cells). Lung lymphocytes in patients with chronic obstructive pulmonary disease and emphysema secrete more interferon gamma—often associated with T helper 1 cells—and interferon-inducible protein 10 and monokine induced by interferon, both of which bind to CXCR3 and are involved in attracting T helper 1 cells. In response to interferon-inducible protein 10 and monokine induced by interferon, but not interferon gamma, lung macrophages secreted macrophage metalloelastase (matrix metalloproteinase-12), a potent elastin-degrading enzyme that causes tissue destruction and which has been linked to emphysema.ConclusionsThese data suggest that Th1 lymphoctytes in the lungs of people with smoking-related damage drive progression of emphysema through CXCR3 ligands, interferon-inducible protein 10, and monokine induced by interferon.
Increased numbers of T lymphocytes are observed in the lungs of patients with chronic obstructive pulmonary disease, but their role in the disease process is not known. We investigated the role of CD8+ T cells in inflammatory cell recruitment and lung destruction in a cigarette smoke-induced murine model of emphysema. In contrast to wild-type C57BL/6J mice that displayed macrophage, lymphocyte, and neutrophil recruitment to the lung followed by emphysema in response to cigarette smoke, CD8+ T cell-deficient (CD8−/−) mice had a blunted inflammatory response and did not develop emphysema when exposed to long-term cigarette smoke. Further studies supported a pathogenetic pathway whereby the CD8+ T cell product, IFN-γ-inducible protein-10, induces production of macrophage elastase (matrix metalloproteinase 12) that degrades elastin, both causing lung destruction directly and generating elastin fragments that serve as monocyte chemokines augmenting macrophage-mediated lung destruction. These studies demonstrate a requirement for CD8+ T cells for the development of cigarette smoke-induced emphysema and they provide a unifying pathway whereby CD8+ T cells are a central regulator of the inflammatory network in chronic obstructive pulmonary disease.
Background Although exacerbations of chronic obstructive pulmonary disease produced by Pseudomonas aeruginosa infections are a major cause of death, the molecular mechanism that produces them is not well known. Here we focused on the energetic basis of dyspnoea, hypercapnia and acidosis symptoms. Methods and Findings We used an in vivo exacerbation model exposing mice to cigarette smoke and LPS, to mimic emphysema and infections, and choline challenges to trigger exacerbations, that showed 31% increased in the airway resistance for naïve mice and 250% for smoke/LPS treatment. Tissue resistance was increased 32%, in naïve mice, and 169% for smoke/LPS treatment. A decreased tissue elastance, was confirmed by decreased collagen content and increased alveoli chord length. Consequently, the O2 demanded was 260% greater for smoke/LPS treated mice, to provide the energy required to pump the same volume of air then for naïve mice. The extra CO2 produced per ml of air pumped caused hypercapnia and acidosis by 4% decrease in pH. In addition, the bacteria grown with choline had a decrease of 67% in phosphate, 23% ATP and 85% phospholipids with an increase of 57% in polyphosphates, 50% carbohydrates, 100% LPS, consuming 45% less energy relative to the bacteria grown with succinate. Conclusion choline, released by P. aeruginosa, triggers exacerbation symptoms by increasing lung resistance, O2 consumption and producing more pCO2 in blood with dyspnea, hypercapnia and acidosis. The energetic shift of decreased O2 bacterial demand and increased lung demand benefits the infection, thus restoring the energetic balance on the host will favor P. aeruginosa eradication.
Recent studies in cystic fibrosis (CF) transmembrane regulator (CFTR) mutations and function have shed light on its involvement in disease progression. The extent of cell and tissue distribution of CFTR facilitates systemic dysfunction of ion transport in patients carrying a mutation in CFTR, however, its incidences as cofounding risk factor to develop other diseases is not well studied. In this review we differentiate the dysfunctions driven by CFTR mutations in cell of the immune system and their role in CF progression and examine the types of medical treatments available to patients up to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.