Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, pre eclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing selfrenewing human trophoblast stem cells and 3dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
SummaryDefective placentation is the underlying cause of various pregnancy complications, such as severe intrauterine growth restriction and preeclampsia. However, studies on human placental development are hampered by the lack of a self-renewing in vitro model that would recapitulate formation of trophoblast progenitors and differentiated subtypes, syncytiotrophoblast (STB) and invasive extravillous trophoblast (EVT), in a 3D orientation. Hence, we established long-term expanding organoid cultures from purified first-trimester cytotrophoblasts (CTBs). Molecular analyses revealed that the CTB organoid cultures (CTB-ORGs) express markers of trophoblast stemness and proliferation and are highly similar to primary CTBs at the level of global gene expression. Whereas CTB-ORGs spontaneously generated STBs, withdrawal of factors for self-renewal induced trophoblast outgrowth, expressing the EVT progenitor marker NOTCH1, and provoked formation of adjacent, distally located HLA-G+ EVTs. In summary, we established human CTB-ORGs that grow and differentiate under defined culture conditions, allowing future human placental disease modeling.
The cytokine tumour necrosis factor alpha (TNF) is a well known member of the TNF superfamily consisting of at least 18 ligands and 29 different receptors involved in numerous cellular processes. TNF signals through two distinct receptors TNFR1 and TNFR2 thereby controlling expression of cytokines, immune receptors, proteases, growth factors and cell cycle genes which in turn regulate inflammation, survival, apoptosis, cell migration, proliferation and differentiation. Since expression of TNF was discovered in amnion and placenta many studies demonstrated the presence of the cytokine and its receptors in the diverse human reproductive tissues. Whereas TNF has been implicated in ovulation, corpus luteum formation and luteolysis, this review focuses on the functions of TNF in human placental, endometrial and decidual cell types of normal tissues and also discusses its role in endometrial and gestational diseases. Physiological levels of the cytokine could be important for balancing cell fusion and apoptotic shedding of villous trophoblasts and to limit trophoblast invasion into maternal decidua. Regulation of the TNF/TNFR system by steroid hormones also suggests a role in uterine function including menstrual cycle-dependent destruction and regeneration of endometrial tissue. Aberrant levels of TNF, however, are associated with diverse reproductive diseases such as amniotic infections, recurrent spontaneous abortions, preeclampsia, preterm labour or endometriosis. Hence, concentrations, receptor distribution and length of stimulation determine whether TNF has beneficial or adverse effects on female reproduction and pregnancy.
Highlights d Reprogramming of patient somatic cells to induced hTSCs with OSKM d Conversion of naive and extended hPSCs to hTSCs d Comparison of models of the human trophoblast lineage d h(i/c)TSCs are akin to day 8 trophoblasts of the human embryo
Development of the human placenta and its different epithelial trophoblasts is crucial for a successful pregnancy. Besides fusing into a multinuclear syncytium, the exchange surface between mother and fetus, progenitors develop into extravillous trophoblasts invading the maternal uterus and its spiral arteries. Migration into these vessels promotes remodelling and, as a consequence, adaption of blood flow to the fetal–placental unit. Defects in remodelling and trophoblast differentiation are associated with severe gestational diseases, such as preeclampsia. However, mechanisms controlling human trophoblast development are largely unknown. Herein, we show that Notch1 is one such critical regulator, programming primary trophoblasts into progenitors of the invasive differentiation pathway. At the 12th wk of gestation, Notch1 is exclusively detected in precursors of the extravillous trophoblast lineage, forming cell columns anchored to the uterine stroma. At the 6th wk, Notch1 is additionally expressed in clusters of villous trophoblasts underlying the syncytium, suggesting that the receptor initiates the invasive differentiation program in distal regions of the developing placental epithelium. Manipulation of Notch1 in primary trophoblast models demonstrated that the receptor promotes proliferation and survival of extravillous trophoblast progenitors. Notch1 intracellular domain induced genes associated with stemness of cell columns, myc and VE-cadherin, in Notch1−fusogenic precursors, and bound to themycpromoter and enhancer region at RBPJκ cognate sequences. In contrast, Notch1 repressed syncytialization and expression of TEAD4 and p63, two regulators controlling self-renewal of villous cytotrophoblasts. Our results revealed Notch1 as a key factor promoting development of progenitors of the extravillous trophoblast lineage in the human placenta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.