In this paper, a testing for highly automated function (HAF) is adapted from the automotive industry to therapeutic medical devices. It contains different steps to achieve a safety argumentation: First, scenarios of interest (SoI) based on a systematic generalization of failure mode and effect analysis (FMEA) are identified, then the concrete scenarios are generated using design of experiment (DoE). These scenarios are simulated virtually and physically and are then evaluated. The procedure is explained with the use of examples.
For patient safety, it is important that a medical device can safely and reliably perform its intended purpose. The challenge in medical technology is that medical devices are heterogeneous systems and thus no widely applicable standard concepts for functional safety exist in medical technology. This is also reflected in the regulatory landscape, with its rather generally applicable standards. Patient safety is currently achieved by performing continuous risk management with an acceptable level of residual risk. Functional safety and its design concepts, as applied in other industries, have so far found little application in the field of medical technology. In this paper, the automotive safety concept "EGAS" is analyzed with regard to its applicability for medical devices. Based on the investigated example of a medical ventilator, important parallels were found between the automotive and the medical device sector, indicating the possibility of successfully applying the EGAS safety concept to medical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.