Many vertebrate species act as both plant pollinators and seed-dispersers, thus interconnecting these processes, particularly on islands. Ecological multilayer networks are a powerful tool to explore interdependencies between processes; however, quantifying the links between species engaging in different types of interactions (i.e. inter-layer edges) remains a great challenge. Here, we empirically measured inter-layer edge weights by quantifying the role of individually marked birds as both pollinators and seed-dispersers of Galápagos plant species over an entire year. Although most species (80%) engaged in both functions, we show that only a small proportion of individuals actually linked the two processes, highlighting the need to further consider intra-specific variability in individuals' functional roles. Furthermore, we found a high variation among species in linking both processes, i.e. some species contribute more than others to the modular organization of the multilayer network. Small and abundant species are particularly important for the cohesion of pollinator seed-dispersal networks, demonstrating the interplay between species traits and neutral processes structuring natural communities.
Patients with pH less than 7.25 or systolic blood pressure less than 180 mmHg associated with hypercapnia should be promptly considered for noninvasive ventilation. With this strategy about 40% of the patients would be initially treated with this technique, which would involve nearly 90% of the patients that require intubation.
Premise
Cleistogamous species constitute interesting study systems to resolve the longstanding question of how outcrossing is maintained given that seed production is ensured through selfing. In this work, we investigate the selective forces that allow the persistence of producing self‐pollinated cleistogamous (CL) and chasmogamous (CH) flowers in Viola jaubertiana Marès & Vigin.
Methods
We monitored three populations at different elevation for two years, and studied the flowering phenology and the relative contribution of each flower morph to parental fitness. We tested whether allocation to CH and CL flowers differed across populations and if it covaried with herbivory and water stress conditions. We also performed hand‐pollination and bagging experiments in CH flowers to estimate inbreeding depression and heterosis.
Results
The CH flowers open in winter under unfavorable conditions for pollination, show high pollen limitation and no‐delayed selfing, and thus produce a low amount of seeds. Conversely, CL flowers appear in early spring, are physiologically cheaper to produce (i.e., dry weight is 3.4 times lower than that of CH flowers), and yield approximately 100 times more seeds than CH flowers. The CH flowers were favored under water stress and low herbivory. Crosses between populations showed up to 25% greater fitness than those within populations.
Conclusions
Despite the great pollen limitation in CH flowers, we suggest that the interaction among different environmental determinants and heterosis are probably sufficient forces to maintain chasmogamy in this long‐lived species, reducing deleterious fixed mutations in the selfed lines.
The Galápagos pollination systems are probably more generalized than previous data suggested and, given that ES dominate the flora of this archipelago, we argue that, contrary to expectation, birds might have an important role in maintaining the reproductive success and diversity of plant communities.
Plant-lizard interactions are still poorly studied, despite lizards are known to interact with flowering plants in many parts of the world. They are commonly reported on islands although the number of documented interactions has also increased in mainland, mostly in isolated environments. In this study, we first performed a global review to explore whether lizard-flower and lizard double mutualistic interactions in continents occur in environments similar to those of islands. Then, we aimed at explaining the factors driving the current distribution of such interactions worldwide. To do this, we considered four environmental factors (latitude, altitude, rainfall and temperature), and phylogeny and body size of lizards that may influence flower visitation. Furthermore, we investigated for the first time the functional role (legitimate visit versus florivory) of lizards in plant reproduction and the conditions under which each type of interaction occurs. Finally, we explored the factors influencing the distribution of lizard double mutualisms worldwide. We recorded a total of 452 lizard-flower interactions (ca 3.4% and 0.1% of the extant lizard and plant species, respectively). Lizard-flower interactions were more frequently recorded on islands (79%) regardless of phylogeny and lizard body size, whereas in mainland the number of interactions increased with altitude. Our analyses also revealed that only 20% of all interactions confirmed pollination effectiveness and a strong association of the type of interaction with environmental factors and species traits. Regarding the distribution of lizard double mutualisms, we found a positive effect of island and rainfall, but a decrease in their occurrence with latitude, altitude, temperature and body size. We predict that mutualistic plant-lizard interactions will be increasingly documented, especially in isolated environments (both on islands and continents), which will help us to better understand the biological patterns of this phenomenon and the mechanisms underlying them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.