The biological responses of four freshwater daphniid species, Daphnia middendorffiana, D. pulicaria, D. pulex and D. parvula, to a single acute dose of ultraviolet B radiation (UVB) were compared. In addition to survival, we compared the induction of DNA damage (i.e. cyclobutane pyrimidine dimers) between species as well as the ability to repair this damage in the presence or absence of photoreactivating light. All four species showed high levels of shielding against DNA damage when compared to damage induced in purified DNA dosimeters at the same time and dose. Significant variation in survival was observed between species depending on temperature and light conditions. Contrary to our expectations, all species showed significantly higher survival and light-dependent DNA damage removal rates at 10°C compared to 20°C, suggesting that the enhanced rate of photoenzymatic repair (PER) at the lower temperature contributed significantly to the recovery of these organisms from UVB. PER was highly effective in promoting survival of three of the four species at 10°C, but at 20°C it was only partially effective in two species, and ineffective in two others. None of the species showed significant dark repair at 20°C and only D. pulicaria showed a significant capacity at 10°C. Two species, D. middendorffiana and D. pulex, showed some short-term survival at 10°C in absence of PER despite their inability to repair any appreciable amount of DNA damage in the dark. All species died rapidly at 20°C in absence of PER, as predicted from complete or near-absence of nucleotide excision repair (NER). Overall, the protective effects of tissue structure and pigmentation were similar in all Daphnia species tested and greatly mitigated the absorption of UVB by DNA and its damaging effects. Surprisingly, the visibly melanotic D. middendorffiana was not better shielded from DNA damage than the three non-melanotic species, and in fact suffered the highest damage rates. Melanin content in this species was not temperature dependent under the experimental growth conditions, and so did not contribute to temperature-dependent responses. It is evident that different species within the same genus have developed diverse biological responses to UVB. Our data strongly suggest that DNA damage is lethal to Daphnia and that photoenzymatic repair is the primary mechanism for removing these lesions. In the absence of light, few species are capable of removing any DNA damage. Surprisingly, the single species in which significant excision repair was detected did so only at reduced temperature. This temperature-dependence of excision repair is striking and may reflect adaptations of certain organisms to stress in a complex and changing environment.
The potential for solar ultraviolet (UV) radiation to act as a significant abiotic control of Cryptosporidium parvum oocysts in nature is unknown. Infectivity of C. parvum following exposure to artificial UV-B and natural solar radiation, with and without UV wavelengths, was tested under controlled pH and temperature conditions. Percent infectivity of exposed oocysts was determined by in vitro cell culture. Artificial UV-B exposures of 32 and 66 kJ/m2 significantly decreased oocyst infectivity by an average of 58 and 98%, respectively. Exposure of oocysts to approximately half and full intensity of full solar spectrum (all wavelengths) for a period of less than 1 day (10 h) in mid-summer reduced mean infectivity by an average of 67% and >99.99%, respectively. Exposure of the C. parvum oocysts to UV-shielded solar radiation (>404 nm) in early autumn reduced mean infectivity by 52%, while full spectrum solar radiation (exposure at all wavelengths) reduced mean infectivity by 97%. The data provide strong evidence that exposure to natural solar radiation can significantly reduce C. parvum infectivity. Direct effects of solar radiation on oocysts in nature will depend on the depth distribution of the oocysts, water transparency, mixing conditions, and perhaps other environmental factors such as temperature, pH, and stress.
Organisms that live at the freshwater surface layer (the neuston) occupy a high energy habitat that is threatened by human activities. Daphniids of the genera Scapholeberis and Megafenestra are adapted to the neuston but are poorly studied for biogeography and diversity. Here we assess the global phylogeography of neustonic daphniids. We obtained 402 new multigene sequences from the 12S rRNA, 16S rRNA, and tRNA (val) regions of the mitochondrial genomes of daphniids from 186 global sites. We assessed the intercontinental origins and boundaries of mitochondrial lineages and the relative rates of evolution in neustonic and planktonic daphniids. We identified 17 divergent lineages in the neustonic daphniids that were associated with biogeographic regions. Six of these lineages had intercontinental ranges – four of these were Transberingian. Patagonian populations of Scapholeberis rammneri were monophyletic and nested within a closely related clade of western North American haplotypes, suggesting an introduction from the Western Nearctic to South America. The Eastern Palearctic was more diverse than other regions, containing eight of the major lineages detected in the Scapholeberinae. The Genus Scapholeberis had high levels of divergence compared to non-neustonic daphniids. Neustonic daphniids have more divergent biogeographic lineages than previously appreciated.
Despite the importance of cnidarian−algal symbioses for the reef ecosystem, little is known of the pattern of symbiont acquisition in juvenile octocorals and how this varies across time and environment. To study this, aposymbiotic larvae from the common Caribbean gorgonian Briareum asbestinum were placed in distinct habitats in the middle Florida Keys, and the establishment of the symbiosis was monitored yearly during 1999−2002. Although Symbiodinium B184 (type based on length variation in domain V of chloroplast large subunit [23S]-ribosomal gene) dominated juvenile B. asbestinum for up to 12 mo, other symbiont types within Clades A, B, C and D co-occurred with B184 at varying frequencies across years and sites. The occurrence of some symbiont types (B184 and B224) did not differ between habitats or years monitored, while other symbiont types (A194, B220 and C180) varied significantly in prevalence depending on year and site. The diversity of symbiont types initially acquired by young juveniles was not simply a subset of the symbiont types found in nearby host cnidarians, suggesting that the source of infecting symbionts was not solely local host populations. Experimental manipulations demonstrated that symbionts continued to enter the host for several months until a single symbiont type dominated within the juvenile octocorals after 3 mo. Although some symbiont types varied significantly across habitats, the pattern of infection did not reflect a given habitat. Instead, aside from Symbiodinium B184 and B224, initial symbiont acquisition appeared random in B. asbestinum recruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.