Magic-sized cadmium selenide (CdSe) nanocrystals have been pyrolytically synthesized. These ultra-small nanocrystals exhibit broadband emission (420-710 nm) that covers most of the visible spectrum while not suffering from self absorption. This behavior is a direct result of the extremely narrow size distribution and unusually large Stokes shift (40-50 nm). The intrinsic properties of these ultra-small nanocrystals make them an ideal material for applications in solid state lighting and also the perfect platform to study the molecule-to-nanocrystal transition.
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
The solvation dynamics of acetonitrile were characterized by a time resolved fluorescence shift measurement determined via the fluorescence upconversion technique. The solvation response is clearly two part in character. The fast initial relaxation accounts for ∼80% of the amplitude and is well fit by a Gaussian of 120 fs FWHM, giving a decay time of 70 fs. The slower tail is exponential with a decay time of ∼200 fs. Comparison of the results to molecular dynamics simulations performed by Maroncelli [J. Chem. Phys. 94, 2085 (1991)] reveal the fast initial part of the solvent response arises from small amplitude inertial rotational motion of molecules in the first solvation shell. The implications of a large amplitude, rapid inertial Gaussian component in the solvent response for theoretical descriptions of chemical reaction dynamics in solution are discussed.
Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.
The dynamics of solvation of an excited chromophore in pure water and in a restricted space with a limited number of water molecules have been studied. The time-dependent Stokes shift of Coumarin 480 (C480) and Coumarin 460 (C460) were measured using femtosecond fluorescence upconversion and time-correlated singlephoton-counting techniques. The system with a limited number of water molecules was an inclusion complex of Coumarin dyes with y-cyclodextrin (yCD). The results of molecular dynamics simulations are compared with the observed solvent response in pure water and in the yCD cavity. The observed relaxation times range from < fs to 1.2 ns. Solvation of C480 in pure water is observed to occur with time constants of <50 and 310 fs. In sharp contrast with the solvation response in pure water, in the case of the C48O/yCD inclusion complex, additional long solvation time constants of 13, 109 and 1200 ps are observed. The stoichiometry, structure and dynamics of the CoumarinlyCD complexes are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.