Recent studies of Arabidopsis have identified several transporters as being important for amino acid uptake. We used Arabidopsis plants with altered expression of lysine histidine transporter 1 (LHT1), amino acid permease 1 (AAP1) and amino acid permease 5 (AAP5) with the aim of disentangling the roles of each transporter in the uptake of different amino acids at naturally occurring concentrations (2-50 μM). LHT1 mutants displayed reduced uptake rates of L-Gln, L-Ala, L-Glu and L-Asp but not of L-Arg or L-Lys, while AAP5 mutants were affected in the uptake of L-Arg and L-Lys only. Double mutants (lht1aap5) exhibited reduced uptake of all tested amino acids. In the concentration range tested, AAP1 mutants did not display altered uptake rates for any of the studied amino acids. Expression analysis of amino acid transporter genes with important root functions revealed no major differences in the individual mutants other than for genes targeted for mutation. We conclude that LHT1 and AAP5, but not AAP1, are crucial for amino acid uptake at concentrations typically found in soils. LHT1 and AAP5 displayed complementary affinity spectra, and no redundancy with respect to gene expression was found between the two transporters, suggesting these two transporters have separate roles in amino acid uptake.
Although organic nitrogen (N) compounds are ubiquitous in soil solutions, their potential role in plant N nutrition has been questioned. We performed a range of experiments on Arabidopsis thaliana genetically modified to enhance or reduce root uptake of amino acids. Plants lacking expression of the Lysine Histidine Transporter 1 (LHT1) displayed significantly lower contents of C and N label and of U- C , N L-glutamine, as determined by liquid chromatography-mass spectrometry when growing in pots and supplied with dually labelled L-glutamine compared to wild type plants and LHT1-overexpressing plants. Slopes of regressions between accumulation of C-labelled carbon and N-labelled N were higher for LHT1-overexpressing plants than wild type plants, while plants lacking expression of LHT1 did not display a significant regression between the two isotopes. Uptake of labelled organic N from soil tallied with that of labelled ammonium for wild type plants and LHT1-overexpressing plants but was significantly lower for plants lacking expression of LHT1. When grown on agricultural soil plants lacking expression of LHT1 had the lowest, and plants overexpressing LHT1 the highest C/N ratios and natural δ N abundance suggesting their dependence on different N pools. Our data show that LHT1 expression is crucial for plant uptake of organic N from soil.
Plants have the ability to take up organic nitrogen (N) but this has not been thoroughly studied in agricultural plants. A critical question is whether agricultural plants can acquire amino acids in a soil ecosystem. The aim of this study was to characterize amino acid uptake capacity in barley (Hordeum vulgare L.) from a mixture of amino acids at concentrations relevant to field conditions. Amino acids in soil solution under barley were collected in microlysimeters. The recorded amino acid composition, 0-8.2 μM of L-Serine, L-Glutamic acid, Glycine, L-Arginine and L-Alanine, was then used as a template for uptake studies in hydroponically grown barley plants. Amino acid uptake during 2 h was studied at initial concentrations of 2-25 μM amino acids and recorded as amino acid disappearance from the incubation solution, analysed with HPLC. The uptake was verified in control experiments using several other techniques. Uptake of all five amino acids occurred at 2 μM and below. The concentration dependency of the uptake rate could be described by Michaelis-Menten kinetics. The affinity constant (K m ) was in the range 19.6-33.2 μM. These K m values are comparable to reported values for soil micro-organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.