SUMMARYWe have previously demonstrated that Sindbis virus infection of Chinese hamster ovary (CHO) cells altered the protein glycosylation machinery of the cell, so that both normal, full-size (nine mannose-containing) oligosaccharides and abnormal, 'truncated' (five mannose-containing) oligosaccharides are transferred from lipid-linked precursors to newly synthesized viral membrane glycoproteins. In the present studies, we have examined the precursor oligosaccharides on viral glycoproteins that were pulse-labelled with [3H]mannose in the presence or absence of glucose, since glucose starvation of uninfected CHO cells has been reported to induce synthesis of truncated precursor oligosaccharides. Pulse-labelling in the absence of glucose led to a greater than 10-fold increase in the relative amount of the truncated precursor oligosaccharides being transferred to the newly synthesized viral glycoproteins and to an apparent underglycosylation of some precursor viral polypeptides, with some asparaginyl sites not acquiring covalently linked oligosaccharides. The mature virion glycoproteins from CHO cells which were pulse-labelled in the absence of glucose and then 'chased' in the presence of glucose contained proportionately more unusual Man3GlcNAc2-size oligosaccharides. These small neutral-type oligosaccharides were apparently not as good a substrate for further processing into complex acidic-type oligosaccharides as the normal Man5GlcNAc 2 intermediate that results from the full-size precursor oligosaccharides.
SUMMARYWe have previously demonstrated the presence of unusual small asparaginyloligosaccharides [(Man)3 GIcNAc2-ASN] in the mature glycoproteins of Sindbis virus released from both wild-type and lectin-resistant Chinese hamster ovary cells, but the mechanism of synthesis of these structures was not determined. Gel filtration and endo-fl-N-acetylglucosaminidase analyses of Pronase-digested glycopeptides from [3H]mannose-labelled Sindbis virus released at different times after infection of a phytohaemagglutinin-resistant line of Chinese hamster ovary cells demonstrated that these small asparaginyl-oligosaccharides were present in similar relative amounts in virus released throughout the virus infection, rather than arising primarily at late times when cytopathic effects were maximal. Similar analyses of pulse-labelled, cellassociated viral glycopeptides suggested that these small oligosaccharides on mature virus glycoprotein resulted from the normal a 1,2-mannosidase processing of truncated precursor oligosaccharides (containing five rather than nine mannoses), rather than from aberrant processing or degradation of the full-size precursor oligosaccharides or normal intermediates.
We have examined and compared the host-cell-dependent glycosylation of the G glycoprotein of vesicular-stomatitis virus (Hazelhurst strain) and the E1 and E2 glycoproteins of Sindbis virus replicated by baby-hamster kidney, chicken-embryo fibroblast and mouse L929 monolayer cell cultures. The results of endo-beta-N-acetylglucosaminidase H digestion of viral proteins labelled with [3H]mannose or leucine and Pronase-digested glycopeptides labelled with [3H]mannose indicated that both the G protein and the E1 protein contained a similar mixture of endoglycosidase-resistant oligosaccharides of the complex acidic type and less extensively processed endoglycosidase-sensitive oligosaccharides of the neutral or hybrid type, with a relatively greater content of the endoglycosidase-sensitive oligosaccharides for virus replicated in the chicken as against hamster or mouse cells. A large fraction of the G protein and the majority of the E1 proteins from the mammalian host cells contained acidic-type oligosaccharides at both glycosylation sites, whereas most of the G and E1 glycoproteins from the avian host cells and essentially all of the E2 protein from all three host-cell types contained an acidic-type oligosaccharide at one site and neutral- or hybrid-type oligosaccharide at the other site. The relative increase in neutral- and hybrid-type oligosaccharides with five-mannose core structures observed for the G and E1 proteins of virus released from the avian host cells suggested that two specific steps in oligosaccharide processing (mediated by alpha-mannoside II and N-acetylglucosaminyltransferase I) were less efficient at one of the glycosylation sites of the vesicular-stomatitis-virus G protein and Sindbis-virus E1 protein in the avian as against mammalian host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.