Gene therapy to correct defective genes requires efficient gene delivery and long-term gene expression. The available vector systems have not allowed the simultaneous achievement of both goals. We have developed a chimeric viral vector system that incorporates favorable aspects of both adenoviral and retroviral vectors. Adenoviral vectors induce target cells to function as transient retroviral producer cells in vivo. The progeny retroviral vector particles are then able to stably transduce neighboring cells. In this system, the nonintegrative adenoviral vector is rendered functionally integrative via the intermediate generation of a retroviral producer cell. The chimeric vectors may allow realization of the requisite goals for specific gene-therapy applications.
The goal of ex vivo culture is to expand and/or differentiate cells in culture such that they retain their functional characteristics when reinfused into a patient. The studies presented here analyzed the use of culture conditions devoid of serum to expand murine hematopoietic stem cells. Bone marrow cells from male B6D2F1/J mice were cultured for up to 28 days in serum-free medium in the absence or presence of stem cell factor (SCF), GM-CSF or a combination of the two factors. Cells cultured for up to 21 days were assessed for granulocyte-macrophage colonyforming cells (GM-CFC), spleen colony-forming units, and cells responsible for short-term and long-term hematopoietic repopulation in lethally irradiated mice. Compared to initial seeding levels, the presence of SCF and GM-CSF increased total cell numbers 90-fold and GM-CFC numbers 42-fold over a 21-28 day culture period. Although spleen colony-forming unit cells did not increase, they were maintained at initial seeding levels over a 21-day period in the presence of SCF and GM-CSF. In lethally irradiated mice, survival enhancement and hematologic reconstitution were optimum with cells cultured for only seven days: survival at six months was 100% with cells cultured in SCF plus GM-CSF or SCF alone, compared to 50% with cells cultured with only GM-CSF. Hybridization analysis of bone marrow, spleen and thymus DNA from irradiated mice transplanted with these cultured cells confirmed male donor cell-derived repopulation at 45 days and 180 days post-transplant. These studies illustrate that murine GM-CFC can be expanded and that long-term repopulating hematopoietic cells can, at the minimum, be maintained ex vivo in serum-free culture. The use of defined serum-free culture systems holds great promise for further evaluation of the mechanisms that control hematopoietic stem cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.