MyristoylCoA:protein N-myristoyltransferase (Nmt) catalyses the co-translational, covalent attachment of myristate (C14:0) to the amino-terminal glycine residue of a number of eukaryotic proteins involved in cellular growth and signal transduction. The NMT1 gene is essential for vegetative growth of Saccharomyces cerevisiae. Studies were carried out to determine if Nmt is also essential for vegetative growth of the pathogenic fungus Candida albicans. A strain of C. albicans was constructed in which one copy of NMT was partially deleted and disrupted. A Gly-447-->Asp mutation was introduced into the second NMT allele. This mutation produced marked reductions in catalytic efficiency at 24 and 37 degrees C, as judged by in vitro kinetic studies of the wild-type and mutant enzymes which had been expressed in, and purified from, Escherichia coli. The growth characteristics of isogenic NMT/NMT, NMT/delta nmt, and nmt delta/nmtG447D C. albicans strains were assessed under a variety of conditions. Only the nmt delta/nmtG447D strain required myristate for growth. This was true at both 24 and 37 degrees C. Palmitate could not substitute for myristate. Incubation of nmt delta/nmtG447D cells at 37 degrees C in the absence of myristate resulted in cell death as observed by the inability to form colonies on media supplemented with 500 microM myristate. Studies in an immunosuppressed-mouse model of C. albicans infection revealed that the NMT/delta nmt strain produced 100% lethality within 7 d after intravenous administration while the isogenic nmt delta/nmtG447G strain produced no deaths even after 21 d. These observations establish that Nmt is essential for vegetative growth of C. albicans and suggest that inhibitors of this acyltransferase may be therapeutically useful fungicidal agents.
. 11-Aminoundecanoyl-SK-NH 2 and 11-aminoundecanoyl-SH-NH 2 establish that a simple alkyl backbone can maintain an appropriate distance between three elements critical for recognition by the fungal enzyme's peptide-binding site: a simple -terminal amino group, a -hydroxyl, and an ⑀-amino group or an imidazole. These compounds contain one peptide bond and two chiral centers, suggesting that it may be feasible to incorporate these elements of recognition, or functionally equivalent mimics, into a fully de-peptidized Nmt inhibitor.
Myristoyl-CoA: protein N-myristoyltransf erase (Nmt) catalyses the covalent attachment of myristate to the N-terminal glycine of a small subset of cellular proteins produced during vegetative growth of Candida albicans. nmt447D is a mutant NMT allele encoding an enzyme with a G l F 7 4 Asp substitution and reduced affinity for myristoyl-CoA. Among isogenic NMTINMT, NMTlhnmt and nmthlnmt447D strains, only nmthlnmt447D cells require myristate for growth on yeast/peptone/dextrose media (YPD) at 24 or 37 "C. When switched from YPD/myristate to YPD alone, 60% of the organisms die within 4 h.Antibodies raised against the C-terminal eight residues of Saccharomyces cerevisiae A r f l p were used to probe Western blots of total cellular proteins prepared from these isogenic Candida strains. N-Myristoylation of C. albicans ADP-ribosylation factor (Arf) produced a change in its electrophoretic mobility during SDS-PAGE : the myristoylated species migrated more rapidly than the nonmyristoylated species. In an NMrhmtA strain, 100% of the Arf is Nmyristoylated based on this mobility shift assay. When exponentially growing nmtMnmt447D cells were incubated at 24 "C in YPDfmyristate, < 25% cellular Arf was nonmyristoylated. In contrast, 2 or 4 h after withdrawal of myristate, 2 50 YO of total cellular Arf was nonmyristoylated. This finding suggests that 2 5 0 % reduction in Arf N-myristoylation is a biochemical marker of a growtharrested cell. A similar conclusion was made after assaying isogenic 5. cerevisiae strains containing various combinations of NMT7, nmt1=451D, ARF1, arflA, ARF2 and ad2A alleles and grown at 24-37 "C on YPD or YPD/myristate.Peptidomimetic inhibitors of C. albicans Nmt were synthesized based on the Nterminal sequence of an 5. cerevisiae Arf. SC-59383 has an I C, , of 145 k0.08 pM for purified C. albicans Nmt and is 560-fold selective for the fungal compared to human N-myristoyltransferase. It had an EC, , of 51 f 17 and 67+6 pM, 24 and 48 h after a single administration of the drug to cultures of C. albicans. The Atf gel mobility shift assay indicated that a single dose of 200 pM produced a < 50% reduction in Arf N-myristoylation after 4 h, which is consistent with the fungistatic, but not fungicidal, activity. The effect on Nmt was specific: an enantiomer, SC-59840, had no inhibitory effect on purified C. albicans Nmt (I C, > 1000 pM), and 200 pM of the compound produced no detectable reduction in Arf N-myristoylation in vivo. SC-58272, which is related to SC-59383, was a more potent inhibitor in vitro (IC,, 0056 &0*01 pM), but had no growth inhibitory activity and did not produce any detectable reduction in Arf J. K. LODGE a n d OTHERS N-myristoylation. These findings highlight the utility of the Arf protein gel mobility shift assay for demonstrating the mechanism-based antifungal activity of SC-59383, a selective inhibitor of C. albicans Nmt.
A new class of antifungal agents has been discovered which exert their activity by blockade of myristoylCoA: protein N-myristoyltransferase (NMT; EC 2.1.3.97). Genetic experiments have established that NMT is needed to maintain the viability of Candida albicans and Cryptococcus neoformans,the two principal causes of systemic fungal infections in immunocompromised humans. Beginning with a weak octapeptide inhibitor ALYASKLS-NH2 (2, Ki = 15.3 +/- 6.4 microM), a series of imidazole-substituted Ser-Lys dipeptide amides have been designed and synthesized as potent and selective inhibitors of Candida albicans NMT. The strategy that led to these inhibitors evolved from the identification of those functional groups in the high-affinity octapeptide substrate GLYASKLS-NH2 1a necessary for tight binding, truncation of the C-terminus, replacement of the four amino acids at the N-terminus by a spacer group, and substitution of the glycine amino group with an N-linked 2-methylimidazole moiety. Initial structure-activity studies led to the identification of 31 as a potent and selective peptidomimetic inhibitor with an IC50 of 56 nM and 250-fold selectivity versus human NMT. 2-Methylimidazole as the N-terminal amine replacement in combination with a 4-substituted phenacetyl moiety imparts remarkable potency and selectivity to this novel class of inhibitors. The (S,S) stereochemistry of serine and lysine residues is critical for the inhibitory activity, since the (R,R) enantiomer 40 is 10(3)-fold less active than the (S,S) isomer 31. The inhibitory profile exhibited by this new class of NMT ligands is a function of the pKa of the imidazole substituent as illustrated by the benzimidazole analog 35 which is about 10-fold less potent than 31. The measured pKa (7.1 +/- 0.5) of 2-methylimidazole in 31 is comparable with the estimated pKa (approximately 8.0) of the glycyl residue in the high-affinity substrate 1a. Groups bulkier than methyl, such as ethyl, isopropyl, or iodo, at the imidazole 2-position have a detrimental effect on potency. Further refinement of 31 by grafting an alpha-methyl group at the benzylic position adjacent to the serine residue led to 61 with an IC50 of 40 nM. Subsequent chiral chromatography of 61 culminated in the discovery of the most potent Candida NMT inhibitor 61a reported to date with an IC50 of 20 nM and 400-fold selectivity versus the human enzyme. Both 31 and 61a are competitive inhibitors of Candida NMT with respect to the octapeptide substrate GNAASARR-NH2 with Ki(app) = 30 and 27 nM, respectively. The potency and selectivity displayed by these inhibitors are dependent upon the size and orientation of the alpha-substituent. An alpha-methyl group with the R configuration corresponding to the (S)-methyl-4-alanine in 2 confers maximum potency and selectivity. Structural modification of 31 and 61 by appending an (S)-carboxyl group beta to the cyclohexyl moiety provided the less potent tripeptide inhibitors 73a and 73b with an IC50 of 1.45 +/- 0.08 and 0.38 +/- 0.03 microM, respectively. However, these ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.