The global Hangenberg Crisis near the Devonian–Carboniferous boundary (DCB) represents a mass extinction that is of the same scale as the so-called ‘Big Five’ first-order Phanerozoic events. It played an important role in the evolution of many faunal groups and destroyed complete ecosystems but affected marine and terrestrial environments at slightly different times within a short time span of c. 100–300 kyr. The lower crisis interval in the uppermost Famennian started as a prelude with a minor eustatic sea-level fall, followed rather abruptly by pantropically widespread black shale deposition (Hangenberg Black Shale and equivalents). This transgressive and hypoxic/anoxic phase coincided with a global carbonate crisis and perturbation of the global carbon cycle as evidenced by a distinctive positive carbon isotope excursion, probably as a consequence of climate/salinity-driven oceanic overturns and outer-shelf eutrophication. It is the main extinction level for marine biota, especially for ammonoids, trilobites, conodonts, stromatoporoids, corals, some sharks, and deeper-water ostracodes, but probably also for placoderms, chitinozoans and early tetrapods. Extinction rates were lower for brachiopods, neritic ostracodes, bryozoans and echinoderms. Extinction patterns were similar in widely separate basins of the western and eastern Prototethys, while a contemporaneous marine macrofauna record from high latitudes is missing altogether. The middle crisis interval is characterized by a gradual but major eustatic sea-level fall, probably in the scale of more than 100 m, that caused the progradation of shallow-water siliciclastics (Hangenberg Sandstone and equivalents) and produced widespread unconformities due to reworking and non-deposition. The glacio-eustatic origin of this global regression is proven by miospore correlation with widespread diamictites of South America and South and North Africa, and by the evidence for significant tropical mountain glaciers in eastern North America. This isolated and short-lived plunge from global greenhouse into icehouse conditions may follow the significant drawdown of atmospheric CO2 levels due to the prior massive burial of organic carbon during the global deposition of black shales. Increased carbon recycling by intensified terrestrial erosion in combination with the arrested burial of carbonates may have led to a gradual rise of CO2 levels, re-warming, and a parallel increase in the influx of land-derived nutrients. The upper crisis interval in the uppermost Famennian is characterized by initial post-glacial transgression and a second global carbon isotope spike, as well as by opportunistic faunal blooms and the early re-radiation of several fossil groups. Minor reworking events and unconformities give evidence for continuing smaller-scale oscillations of sea-level and palaeoclimate. These may explain the terrestrial floral change near the Famennian–Tournaisian boundary and contemporaneous, evolutionarily highly significant extinctions of survivors of the main crisis. Still poorly understood small-scale events wiped out the last clymeniid ammonoids, phacopid trilobites, placoderms and some widespread brachiopod and foraminiferan groups. The post-crisis interval in the lower Tournaisian is marked by continuing eustatic rise (e.g. flooding of the Old Red Continent), and significant radiations in a renewed greenhouse time. But the recovery had not yet reached the pre-crisis level when it was suddenly interrupted by the global, second-order Lower Alum Shale Event at the base of the middle Tournaisian.
A biostratigraphic correlation of the Devonian/Carboniferous (D/C) boundary sections from the Carnic Alps, the Graz Palaeozoic, the Montagne Noire and the Pyrenees resulted in a high-resolution record of the carbon isotopic composition of micrites (d 13 C carb ), of sedimentary organic matter (d 13 C org ) and of oxygen isotope ratios of conodont apatite (d 18 O phosph ). The studies focused on the interval between the Upper postera Zone (Late Famennian) and the sandbergi Zone (Lower Tournaisian). For the first time, weak but significant positive carbon isotope excursions in micrites and in the sedimentary organic matter is reported from the Middle and Upper expansa zones of the Carnic Alps. They coincide with a decrease in the oxygen isotope values of conodont apatite. The excursions indicate changes in the global carbon cycle during an episode of high seawater temperatures, and correlate with sedimentary change and a stepwise eustatic rise in the Rhenish Massif. High carbon isotope values were also measured in limestones from the Graz Palaeozoic in the Upper praesulcata Zone, which were previously reported from the Rhenish Massif, Carnic Alps, Montagne Noire and the North America continent. The change from a palmatolepid-polygnathid conodont biofacies to a palmatolepid-bispathodid-branmehlid biofacies in the expansa Zone in the Carnic Alps is obviously influenced by anoxic conditions and repeated transgressive phases. The protognathodids and the polygnathids start to radiate in the Upper praesulcata Zone, after the main end-Famennian extinction episode. This is connected with the disappearance of the palmatolepids, and environmental stress created by worldwide anoxic conditions, climate change and sea-level changes, stimulated the radiation of both protognathodids and the polygnathids. The regional correlation of the geochemical records as well as interpretations of these records on a global scale indicate that changes in conodont biofacies of Late Famennian-Early Tournaisian limestones were caused by a complex pattern of environmental changes.
Chrono-, litho- and biostratigraphy across the Devonian–Carboniferous transition are reviewed to provide a precise time framework for the global Hangenberg Crisis and for the current search for a revised basal Carboniferous Global Stratotype Section and Point (GSSP). The outer shelf deposits of the Rhenish Massif (Germany) form a lithological standard. Pre- (main Wocklum Limestone), lower (top Wocklum Limestone/Drewer Sandstone to Hangenberg Black Shale), middle (Hangenberg Shale/Sandstone), upper (Stockum Limestone), and post-crisis (Hangenberg Limestone) deposits are defined. Combined with the conodont, ammonoid and miospore zonations and eustatic trends, this succession can be correlated internationally. The contemporaneous successions of the Ardennes serve as a reference for shallow shelf settings. The positive and negative aspects of five options for a redefined Devonian–Carboniferous boundary level are discussed: (1) base of the black shale (main extinction level, base of Bispathodus costatus–Protognathodus kockeli Interregnum and LN Zone), (2) sequence boundary (widespread unconformities) or glacial and regressive peak (base of Hangenberg Sandstone), (3) base of the kockeli Zone and of initial postglacial transgression (base of lower Stockum Limestone), (4) entry of Siphonodella (Eosiphonodella) sulcata (base of upper Stockum Limestone), and (5) base of post-crisis interval (base of Hangenberg Limestone), at approximately the poorly correlated current GSSP level. Due to homonymy, Siphonodella (Siphonodella) hassi Ji, 1985 is renamed as Siphonodella (Siphonodella) jii nom. nov. Consequently, the mid-lower Tournaisian S. (S.) hassi Zone (previous Upper S. (S.) duplicata Zone) becomes the S. (S.) jii Zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.