Human pre-catalytic spliceosomes contain several proteins that associate transiently just prior to spliceosome activation and are absent in yeast, suggesting that this critical step is more complex in higher eukaryotes. We demonstrate via RNAi coupled with RNA-Seq that two of these human-specific proteins, Smu1 and RED, function both as alternative splicing regulators and as general splicing factors and are required predominantly for efficient splicing of short introns. In vitro splicing assays reveal that Smu1 and RED promote spliceosome activation, and are essential for this step when the distance between the pre-mRNA’s 5′ splice site (SS) and branch site (BS) is sufficiently short. This Smu1-RED requirement can be bypassed when the 5′ and 3′ regions of short introns are physically separated. Our observations suggest that Smu1 and RED relieve physical constraints arising from a short 5′SS-BS distance, thereby enabling spliceosomes to overcome structural challenges associated with the splicing of short introns.
Antiviral innate immunity represents the first defense against invading viruses and is key to control viral infections, including SARS-CoV-2. Body temperature is an omnipresent variable but was neglected when addressing host defense mechanisms and susceptibility to SARS-CoV-2 infection. Here, we show that increasing temperature in a 1.5°C window, between 36.5 and 38°C, strongly increases the expression of genes in two branches of antiviral immunity, nitric oxide production and type I interferon response. We show that alternative splicing coupled to nonsense-mediated decay decreases STAT2 expression in colder conditions and suggest that increased STAT2 expression at elevated temperature induces the expression of diverse antiviral genes and SARS-CoV-2 restriction factors. This cascade is activated in a remarkably narrow temperature range below febrile temperature, which reflects individual, circadian and age-dependent variation. We suggest that decreased body temperature with aging contributes to reduced expression of antiviral genes in older individuals. Using cell culture and in vivo models, we show that higher body temperature correlates with reduced SARS-CoV-2 replication, which may affect the different vulnerability of children versus seniors toward severe SARS-CoV-2 infection. Altogether, our data connect body temperature and pre-mRNA processing to provide new mechanistic insight into the regulation of antiviral innate immunity.
4.11 Model for how the 5'SS-BS distance affects the dependency of spliceosome activation on Smu1/RED 4.12 The tri-snRNP still binds the MINX-70 pre-mRNA .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.