Siglec-9 is a sialic acid binding lectin predominantly expressed on myeloid cells. Aberrant glycosylation occurs in essentially all types of cancers resulting in increased sialylation. Thus when MUC1 is expressed on cancer cells it is decorated by multiple short, sialylated O-linked glycans (MUC1-ST). Here we show that this cancer-specific MUC1 glycoform could, through the engagement of Siglec-9, educate myeloid cells to release factors associated with tumor microenvironment determination and disease progression. Moreover MUC1-ST induced macrophages to display a TAM-like phenotype with increased expression of PD-L1. MUC1-ST binding to Siglec-9 did not activate SHP-1/2 but surprisingly induced calcium flux leading to MEK-ERK activation. This work defines a critical role for aberrantly glycosylated MUC1 and identifies an activating pathway following Siglec-9 engagement.
Cell lines for industrial pharmaceutical protein production processes need to be robust, fast-growing, and high-producing. In order to find such cells, we performed a high passage cultivation of monoclonal antibody producing Chinese hamster ovary (CHO) cells in shaking flasks for more than 420 days. Examinations of cell growth, productivity, intracellular protein, and metabolite characteristics as well as product transcript and genomic integrate levels revealed substantial differences between subpopulations that were cryopreserved from long-term cultivation at different time points. Detected growth performance as well as intracellular adenylate energy charge increased during high passage cultivation. In addition, proteome analysis indicated an augmented utilization of glycolysis with higher passage number and an enhanced robustness based on anti-stress proteins. Interestingly, the product formation increased at first but decreased dramatically during the later subcultivations, although selection pressure was applied. Utilizing flow cytometry and quantitative real-time polymerase chain reaction, we further examined the translational, transcriptional, and genomic basis for the observed phenotypes. The detected reduction of antibody expression, in particular of the heavy chain, was ascribed to a decrease of antibody transcript, caused by loss of gene copy number and assumably a malfunctioning splicing mechanism of the dicistronic mRNA. To our knowledge, this is the first systematic approach using process analytics and targeted omic techniques to elucidate the effects of long-term cultivation of CHO cells expressing a therapeutic protein.
Due to the increasing demand for recombinant proteins, the interest in mammalian cell culture, especially of Chinese hamster ovary cells, grows rapidly. This is accompanied by the desire to improve cell lines in order to achieve higher titers and a better product quality. Until recently, most cell line development procedures were based on random integration and gene amplification, but several methods for targeted genetic modification of cells have been developed. Some of those are homologous recombination, RNA interference and zinc-finger nucleases. Especially the latter two have evolved considerably and will soon become a standard for cell line engineering in research and industrial application. This review presents an overview of established as well as new and promising techniques for targeted genetic modification of mammalian cells.
Perfusion operation mode remains the preferred platform for production of labile biopharmaceuticals (e.g., blood factors) and is also being increasingly adopted for production of stable products (e.g., monoclonal antibodies). Regardless of the product, process development typically aims at maximizing production capacity. In this work, we investigated the impact of perfusion cultivation conditions on process productivity for production of human factor VIII (FVIII). Recombinant CHO cells were cultivated in bioreactors coupled to inclined settlers and the effects of reducing the temperature to 31 C with or without valeric acid (VA) supplementation were evaluated. Increases in cell specific productivity (q p ) up to 2.4-fold (FVIII concentration) and up to 3.0-fold (FVIII biological activity) were obtained at 31 C with VA compared to the control at 37 C. Biological activity is the most important quality attribute for FVIII and was positively affected by mild hypothermia in combination with the chemical inducer. The low temperature conditions resulted in enhanced product transcript levels, suggesting that the higher q p is related to the increased mRNA levels. Furthermore, a high-producer subclone was evaluated under the perfusion conditions optimized for the parental clone (31 C with VA), yielding increases in q p of 6-fold and 15-fold compared to the parental clone cultivated under the same condition and at 37 C, respectively. The proposed perfusion strategy enables increased product formation without increasing production costs, being potentially applicable to perfusion production of other CHO-derived biopharmaceuticals. To the best of our knowledge, this is the first report showing the benefits of perfusion combining mild hypothermia with VA supplementation. K E Y W O R D SCHO perfusion cultivation, mild hypothermia, productivity, recombinant factor VIII, valeric acid
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.